Advertisement

Enhancement of ductility and improvement of abnormal Goss grain growth of magnetostrictive Fe–Ga rolled alloys

  • Ji-heng Li
  • Chao Yuan
  • Xing Mu
  • Xiao-qian Bao
  • Xue-xu Gao
Article

Abstract

The influences of initial microstructures on the mechanical properties and the recrystallization texture of magnetostrictive 0.1at% NbC-doped Fe83Ga17 alloys were investigated. The directionally solidified columnar-grained structure substantially enhanced the tensile elongation at intermediate temperatures by suppressing fracture along the transverse boundaries. Compared with tensile elongations of 1.0% at 300°C and 12.0% at 500°C of the hot-forged equiaxed-grained alloys, the columnar-grained alloys exhibited substantially increased tensile elongations of 21.6% at 300°C and 46.6% at 500°C. In the slabs for rolling, the introduction of <001>-oriented columnar grains also promotes the secondary recrystallization of Goss grains in the finally annealed sheets, resulting in an improvement of the saturation magnetostriction. For the columnar-grained specimens, the inhomogeneous microstructure and disadvantage in number and size of Goss grains are improved in the primarily annealed sheets, which is beneficial to the abnormal growth of Goss grains during the final annealing process.

Keywords

magnetostriction iron-gallium alloys columnar grain ductility abnormal grain growth 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (No. 51501006), State Key Laboratory for Advanced Metals and Materials (No. 2017Z-11), the Fundamental Research Funds for the Central Universities (No. FRF-GF-17-B2) and partly supported by a scholarship from the China Scholarship Council.

References

  1. [1]
    A.E. Clark, J.B. Restorff, M. Wun-Fogle, T.A Lograsso, and D.L. Schlagel, Magnetostrictive properties of body-centered cubic Fe–Ga and Fe–Ga–Al alloys, IEEE Trans. Magn., 36(2000), No. 5, p. 3238.CrossRefGoogle Scholar
  2. [2]
    A.E. Clark, K.B. Hathaway, M. Wun-Fogle, J.B. Restorff, T.A. Lograsso, V.M. Keppens, G. Petculescu, and R.A. Taylor, Extraordinary magnetoelasticity and lattice softening in bcc Fe–Ga alloys, J. Appl. Phys., 93(2003), No. 10, p. 8621.CrossRefGoogle Scholar
  3. [3]
    R.A. Kellogg, A.M. Russell, T.A. Lograsso, A.B. Flatau, A.E. Clark, and M. Wun-Fogle, Tensile properties of magnetostrictive iron-gallium alloys, Acta Mater., 52(2004), No. 14, p. 5043.CrossRefGoogle Scholar
  4. [4]
    B. Yoo, S.M. Na, A.B. Flatau, and D.J. Pines, Ultrasonic guided wave sensing performance of a magnetostrictive transducer using Galfenol flakes-polymer composite patches, J. Appl. Phys., 117(2015), No. 17, art. No. 17A916.Google Scholar
  5. [5]
    M.L. Huang, T.A. Lograsso, A.E. Clark, J.B. Restorff, and M. Wun-Fogle, Effect of interstitial additions on magnetostriction in Fe–Ga alloys, J. Appl. Phys., 103(2008), No. 7, art. No. 07B314.Google Scholar
  6. [6]
    L.L. Liao, M.L. Fang, J. Zhu, J.H. Li, and J. Wang, Influence of Al on the magnetostriction of Fe–Ga polycrystal alloys under compressive stress, Inter. J. Miner. Metal. Mater., 21(2014), No. 1, p. 52.CrossRefGoogle Scholar
  7. [7]
    A.E. Clark, J.B. Restorff, M. Wun-Fogle, K.B. Hathaway, T.A. Lograsso, M. Huang, and E. Summers, Magnetostriction of ternary Fe–Ga–X (X = C, V, Cr, Mn, Co, Rh) alloys, J. Appl. Phys.,101(2007), No. 9, art. No. 09C507.Google Scholar
  8. [8]
    J.H. Li, X.X. Gao, J. Zhu, X.Q. Bao, T. Xia, and M.C. Zhang, Ductility, texture and large magnetostriction of Fe–Ga-based sheets, Scripta Mater., 63(2010), No. 2, p. 246.CrossRefGoogle Scholar
  9. [9]
    S.M. Na and A.B. Flatau, Deformation behavior and magnetostriction of polycrystalline Fe–Ga–X (X = B, C, Mn, Mo, Nb, NbC) alloys, J. Appl. Phys., 103(2008), art. No. 07D304.Google Scholar
  10. [10]
    N. Srisukhumbowornchai and S. Guruswamy, Crystallographic textures in rolled and annealed Fe–Ga and FeAl alloys, Metall. Mater. Trans. A., 35(2004), No. 9, p. 2963.CrossRefGoogle Scholar
  11. [11]
    S.M. Na, J.H. Yoo, and A.B. Flatau, Abnormal (110) grain growth and magnetostriction in recrystallized Galfenol with dispersed niobium carbide, IEEE T. Magn., 45(2009), No. 10, p. 4132.CrossRefGoogle Scholar
  12. [12]
    S.M. Na and A.B. Flatau, Single grain growth and large magnetostriction in secondarily recrystallized Fe–Ga thin sheet with sharp Goss (011)[100] orientation, Scripta Mater., 66(2012), No. 5, p. 307.CrossRefGoogle Scholar
  13. [13]
    T. Hirano, Improvement of room temperature ductility of stoichiometric Ni3Al by unidirectional solidification, Acta Metall. Mater., 38(1990), No. 12, p. 2667.CrossRefGoogle Scholar
  14. [14]
    Y.K. Mo, Z.H. Zhang, J.X. Xie, H.D. Fu, and H.J. Pan, Improved cold rolling workability of warm rolled Fe–6.5wt%Si electrical steel with columnar grains by annealing, Inter. J. Miner. Metal. Mater., 22(2015), No. 11, p. 1171.CrossRefGoogle Scholar
  15. [15]
    C. Yuan, J.H. Li, W.L. Zhang, X.Q. Bao, and X.X. Gao, Sharp Goss orientation and large magnetostriction in the rolled columnar-grained Fe–Ga alloys, J. Magn. Magn. Mater., 374(2015), p. 459.CrossRefGoogle Scholar
  16. [16]
    C. Yuan, J.H. Li, W.L. Zhang, X.Q. Bao, and X.X. Gao, Secondary recrystallization behavior in the rolled columnar-grained Fe–Ga alloys, J. Magn. Magn. Mater., 391(2015), p. 145.CrossRefGoogle Scholar
  17. [17]
    J.H. Li, X.X. Gao, X.M. Xiao, X.Q. Bao, and M.C. Zhang, Magnetostriction of <100> oriented Fe–Ga rods with large diameter, Rare Met., 34(2015), No. 7, p. 472.CrossRefGoogle Scholar
  18. [18]
    C. Yuan, J.H. Li, W.L. Zhang, X.Q. Bao, and X.X. Gao, Microstructure and magnetostrictive performance of NbC-doped <100> oriented Fe–Ga alloys, Inter. J. Miner. Metal. Mater., 22(2015), No. 1, p. 52.CrossRefGoogle Scholar
  19. [19]
    H.D. Chopra and M. Wuttig, Non-Joulian magnetostriction, Nature, 521(2015), No. 7552, p. 340.CrossRefGoogle Scholar
  20. [20]
    T. Gladman, On the theory of the effect of precipitate particles on grain growth in metals, Proc. Roy. Soc. A, 294(1966), No. 1438, p. 298.CrossRefGoogle Scholar
  21. [21]
    Y.L. Feng, Y. Li, J. Guo, J. Li, and T.T. Du, Effect of slab reheating temperature on recrystallization microstructure, texture and magnetic properties of Nb-containing grain-oriented silicon steel, J. Magn. Magn. Mater., 439(2017), p. 135.CrossRefGoogle Scholar
  22. [22]
    M. Matsuo, Texture control in the production of grain oriented silicon steels, ISIJ Int., 29(1989), No. 10, p. 809.CrossRefGoogle Scholar
  23. [23]
    N. Zhang, P. Yang, and W.M. Mao, Influence of columnar grains on the recrystallization texture evolution in Fe–3%Si electrical steel, Acta Metall. Sin., 48(2012), No. 3, p. 307.CrossRefGoogle Scholar

Copyright information

© University of Science and Technology Beijing and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Ji-heng Li
    • 1
  • Chao Yuan
    • 1
  • Xing Mu
    • 1
  • Xiao-qian Bao
    • 1
  • Xue-xu Gao
    • 1
  1. 1.State Key Laboratory for Advanced Metals and MaterialsUniversity of Science and Technology BeijingBeijingChina

Personalised recommendations