Advertisement

Characterization and in-situ formation mechanism of tungsten carbide reinforced Fe-based alloy coating by plasma cladding

  • Mi-qi Wang
  • Ze-hua Zhou
  • Lin-tao Wu
  • Ying Ding
  • Ze-hua Wang
Article
  • 40 Downloads

Abstract

The precursor carbonization method was first applied to prepare W–C compound powder to perform the in-situ synthesis of the WC phase in a Fe-based alloy coating. The in-situ formation mechanism during the cladding process is discussed in detail. The results reveal that fine and obtuse WC particles were successfully generated and distributed in Fe-based alloy coating via Fe/W–C compound powders. The WC particles were either surrounded by or were semi-enclosed in blocky M7C3 carbides. Moreover, net-like structures were confirmed as mixtures of M23C6 and α-Fe; these structures were transformed from M7C3. The coarse herringbone M6C carbides did not only derive from the decomposition of M7C3 but also partly originated from the chemical reaction at the α-Fe/M23C6 interface. During the cladding process, the phase evolution of the precipitated carbides was WC → M7C3 → M23C6 + M6C.

Keywords

precursor carbonization tungsten carbide (WC) microstructure in-situ formation mechanism phase evolution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51379070).

References

  1. [1]
    G. Dong, B. Yan, Q. Deng, and T. Yu, Microstructure and wear resistance of in-situ NbC particles reinforced Ni-based alloy composite coating by laser cladding, J. Wuhan. Univ. Technol., 27(2012), No. 2, p. 231.CrossRefGoogle Scholar
  2. [2]
    J.B. Liu, TiC/Fe cermet coating by plasma cladding using asphalt as a carbonaceous precursor, Prog. Nat. Sci., 18(2008), No. 4, p. 447.CrossRefGoogle Scholar
  3. [3]
    J.B. Liu, L.M. Wang, and H.Q. Li, Reactive plasma cladding of TiC/Fe cermet coating using asphalt as a carbonaceous precursor, Appl. Surf. Sci., 255(2009), No. 9, p. 4921.CrossRefGoogle Scholar
  4. [4]
    B.S. Du, Z.D. Zou, X.H. Wang, and S.Y. Qu, In-situ synthesis of TiB2/Fe composite coating by laser cladding, Mater. Lett., 62(2008), No. 4-5, p. 689.CrossRefGoogle Scholar
  5. [5]
    S.Q. Jiang, G. Wang, Q.W. Ren, C.D. Yang, Z.H. Wang, and Z.H. Zhou, In-situ synthesis of Fe-based alloy clad coatings containing TiB2–TiN–(h-BN), Int. J. Miner. Metall. Mater., 22(2015), No. 6, p. 613.CrossRefGoogle Scholar
  6. [6]
    L.J. Guo, X.B. Wang, P.P. Zhang, Z.H. Yang, and H.B. Wang, Synthesis of Fe based ZrB2 composite coating by gas tungsten arc welding, Mater. Sci. Technol., 29(2013), No. 1, p. 19.CrossRefGoogle Scholar
  7. [7]
    J. Guo, Y. Li, H.W. Cui, X.F. Cui, and Z.B. Cai, Microstructure and tribological properties of in-situ synthesized TiN reinforced Ni/Ti alloy clad layer prepared by plasma cladding technique, J. Mater. Eng. Perform., 25(2016), No. 6, p. 2412.CrossRefGoogle Scholar
  8. [8]
    D. Shu, Z.G. Li, K. Zhang, C.W. Yao, D. Y. Li, and Z.B. Dai, In-situ synthesized high volume fraction WC reinforced Ni-based coating by laser cladding, Mater. Lett., 195(2017), p. 178.CrossRefGoogle Scholar
  9. [9]
    Y.L. Yuan, and Z.G. Li, A novel approach of in-situ synthesis of WC particulate-reinforced Fe–30Ni ceramic metal coating, Surf. Coat. Technol., 328(2017), p. 256.CrossRefGoogle Scholar
  10. [10]
    H.T. Wang, S.Q. Zhang, J.H. Huang, J.L. Zhu, and H. Zhang, Reactive detonation spraying of in-situ synthesised TiC reinforced Fe36Ni based composite coatings via sucrose as carbonaceous precursor, Surf. Eng., 25(2009), No. 4, p. 295.CrossRefGoogle Scholar
  11. [11]
    D. Shu, Z.G. Li, C.W. Yao, D.Y. Li, and Z.B. Dai, In-situ synthesised WC reinforced nickel coating by laser cladding, Surf. Eng., 34(2018), No. 4, p. 1.CrossRefGoogle Scholar
  12. [12]
    L.B. Niu, M. Hojamberdiev, and Y.H. Xu, Preparation of in-situ-formed WC/Fe composite on gray cast iron substrate by a centrifugal casting process, J. Mater. Process. Technol., 210(2010), No. 14, p. 1986.CrossRefGoogle Scholar
  13. [13]
    D.D. Gu and W. Meiners, Microstructure characteristics and formation mechanisms of in-situ WC cemented carbide based hardmetals prepared by selective laser melting, Mater. Sci. Eng. A, 527(2010), No. 29-30, p.7585.CrossRefGoogle Scholar
  14. [14]
    G.R. Yang, C.P. Huang, W.M. Song, J. Li, J.J. Lu, Y. Ma, and Y. Hao, Microstructure characteristics of Ni/WC composite cladding coatings, Int. J. Miner. Metall. Mater., 23(2016), No. 2, p.184.CrossRefGoogle Scholar
  15. [15]
    O. Verezub, Z. Kálazi. G. Buza, N.V. Verezub, and G. Kaptay, In-situ synthesis of a carbide reinforced steel matrix surface nanocomposite by laser melt injection technology and subsequent heat treatment, Surf. Coat. Technol., 203(2009), No. 20-21, p. 3049.CrossRefGoogle Scholar
  16. [16]
    X.L. Wu and G.G. Chen, Microstructural features of an iron-based laser coating, J. Mater. Sci., 34(1999), No. 14, p. 3355.CrossRefGoogle Scholar
  17. [17]
    D.V. Shtansky and G. Inden, Phase transformation in Fe–Mo–C and Fe–W–C steels — II. Eutectoid reaction of M23C6 carbide decomposition during austenitization, Acta Mater., 45(1997), No. 7, p. 2879.CrossRefGoogle Scholar
  18. [18]
    B. Binesh and M. Aghaie-Khafri, Phase evolution and mechanical behavior of the semi-solid SIMA processed 7075 aluminum alloy, Metals, 6(2016), No. 3, p.42.CrossRefGoogle Scholar

Copyright information

© University of Science and Technology Beijing and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Mi-qi Wang
    • 1
  • Ze-hua Zhou
    • 1
  • Lin-tao Wu
    • 1
  • Ying Ding
    • 1
  • Ze-hua Wang
    • 1
  1. 1.College of mechanics and materialsHohai UniversityNanjingChina

Personalised recommendations