Advertisement

Study on reduction of MoS2 powders with activated carbon to produce Mo2C under vacuum conditions

  • Guo-hua Zhang
  • He-qiang Chang
  • Lu Wang
  • Kuo-chih Chou
Article

Abstract

A method of preparing Mo2C via vacuum carbothermic reduction of MoS2 in the temperature range of 1350–1550°C was proposed. The effects of MoS2-to-C molar ratio (α, α = 1:1, 1:1.5, and 1:2.5) and reaction temperature (1350 to 1550°C) on the reaction were studied in detail. The phase transition, morphological evolution, and residual sulfur content of the products were analyzed by X-ray diffraction, field-emission scanning electron microscopy, and carbon–sulfur analysis, respectively. The results showed that the complete decomposition of MoS2 under vacuum is difficult, whereas activated carbon can react with MoS2 under vacuum to generate Mo2C. Meanwhile, higher temperatures and the addition of more carbon accelerated the rate of carbothermic reduction reaction and further decreased the residual sulfur content. From the experimental results, the optimum molar ratio α was concluded to be 1:1.5.

Keywords

vacuum treatment carbon thermoreduction molybdenum minerals molybdenum carbide microstructure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51725401).

References

  1. [1]
    J. Haines, J.M. Léger, C. Chateau, and J.E. Lowther, Experimental and theoretical investigation of Mo2C at high pressure, J. Phys. Condens. Matter, 13(2001), No. 11, p. 2447.CrossRefGoogle Scholar
  2. [2]
    W.F. Chen, J.T. Muckerman, and E. Fujita, Recent developments in transition metal carbides and nitrides as hydrogen evolution electrocatalysts, Chem. Commun., 49(2013), No. 79, p. 8896.CrossRefGoogle Scholar
  3. [3]
    X.Y. Li, D. Ma, L.M. Chen, and X.H. Bao, Fabrication of molybdenum carbide catalysts over multi-walled carbon nanotubes by carbothermal hydrogen reduction, Catal. Lett., 116(2007), No. 1, p. 63.CrossRefGoogle Scholar
  4. [4]
    X.R. Wang, M.F. Yan, and H.T. Chen, First-principle calculations of hardness and melting point of Mo2C, J. Mater. Sci. Technol., 25(2009), No. 3, p. 419.CrossRefGoogle Scholar
  5. [5]
    E.J. Pavlina, J.G. Speer, and C.J. Van Tyne, Equilibrium solubility products of molybdenum carbide and tungsten carbide in iron, Scripta Mater., 66(2012), No. 5, p. 243.CrossRefGoogle Scholar
  6. [6]
    Z.N. Zhou and K.M. Wu, Molybdenum carbide precipitation in an Fe-C-Mo alloy under a high magnetic field, Scripta Mater., 61(2009), No. 7, p. 670.CrossRefGoogle Scholar
  7. [7]
    S. Yamasaki and H.K.D.H. Bhadeshia, Modelling and characterisation of Mo2C precipitation and cementite dissolution during tempering of Fe-C-Mo martensitic steel, Mater. Sci. Technol., 19(2003), No. 6, p. 723.CrossRefGoogle Scholar
  8. [8]
    H.M. Wang, X.H. Wang, M.H. Zhang, X.Y. Du, W. Li, and K.Y. Tao, Synthesis of bulk and supported molybdenum carbide by a single-step thermal carburization method, Chem. Mater., 19(2007), No. 7, p. 1801.CrossRefGoogle Scholar
  9. [9]
    J.G. Choi, J.R. Brenner, and L.T. Thompson, Pyridine hydrodenitrogenation over molybdenum carbide catalysts, J. Catal., 154(1995), No. 1, p. 33.CrossRefGoogle Scholar
  10. [10]
    T. Christofoletti, J.M. Assaf, and E.M. Assaf, Methane steam reforming on supported and non-supported molybdenum carbides, Chem. Eng. J., 106(2005), No. 2, p. 97.CrossRefGoogle Scholar
  11. [11]
    Z.H. Liang, P.L. Ying, and C. Li, Nanostructured β-Mo2C prepared by carbothermal hydrogen reduction on ultrahigh surface area carbon material, Chem. Mater., 14(2002), No. 7, p. 3148.CrossRefGoogle Scholar
  12. [12]
    T.C. Xiao, A.P.E. York, H. Al-Megren, C.V. Williams, H.T. Wang, and M.L.H. Green, Preparation and characterisation of bimetallic cobalt and molybdenum carbides, J. Catal., 202(2001), No. 1, p. 100.CrossRefGoogle Scholar
  13. [13]
    G. Vitale, M.L. Frauwallner, E. Hernandez, C.E. Scott, and P. Pereira-Almao, Low temperature synthesis of cubic molybdenum carbide catalysts via pressure induced crystallographic orientation of MoO3 precursor, Appl. Catal. A, 400(2011), No. 1-2, p. 221.CrossRefGoogle Scholar
  14. [14]
    J. Dang, G.H. Zhang, L. Wang, K.C. Chou, and P.C. Pistorius, Study on reduction of MoO2 powders with CO to produce Mo2C, J. Am. Ceram. Soc., 99(2016), No. 3, p. 819.CrossRefGoogle Scholar
  15. [15]
    G. Vitale, H. Guzmán, M.L. Frauwallner, C.E. Scott, and P. Pereira-Almao, Synthesis of nanocrystalline molybdenum carbide materials and their characterization, Catal. Today, 250(2015), p. 123.CrossRefGoogle Scholar
  16. [16]
    J.A. Nelson and M.J. Wagner, High surface area Mo2C and WC prepared by alkalide reduction, Chem. Mater., 14(2002), No. 5, p. 1639.CrossRefGoogle Scholar
  17. [17]
    O.N. Baklanova, A.V. Vasilevich, A.V. Lavrenov, V.A. Drozdov, I.V. Muromtsev, A.B. Arbuzov, M.V. Trenikhin, S.S. Sigaeva, V.L. Temerev, O.V. Gorbunova, V.A. Likholobov, A.I. Nizovskii, and A.V. Kalinkin, Molybdenum carbide synthesized by mechanical activation an inert medium, J. Alloys Compd., 698(2017), p. 1018.CrossRefGoogle Scholar
  18. [18]
    H. Preiss, L.M. Berger, and D. Schultze, Studies on the carbothermal preparation of titanium carbide from different gel precursors, J. Eur. Ceram. Soc., 19(1999), No. 2, p. 195.CrossRefGoogle Scholar
  19. [19]
    R. Padilla, M.C. Ruiz, and H.Y. Sohn, Reduction of molybdenite with carbon in the presence of lime, Metall. Mater. Trans. B, 28(1997), No. 2, p. 265.CrossRefGoogle Scholar
  20. [20]
    P.M. Prasad, T.R. Mankhand, P.S.P. Rao, S.N. Singh, and A.J.K. Prasad, Kinetics of the direct synthesis of molycarbide by reduction-carburization of molybdenite in the presence of lime, Metall. Mater. Trans. B, 33(2002), No. 3, p. 345.CrossRefGoogle Scholar
  21. [21]
    S.G. Najafabadi, M.H Abbasi, and A. Saidi, Thermodynamic investigation of lime-enhanced molybdenite reduction using methane-containing gases, Thermochim. Acta, 503-504(2010), p. 46.CrossRefGoogle Scholar
  22. [22]
    S. Ghasemi, M.H. Abbasi, A. Saidi, J.Y. Kim, and J.S. Lee, Sulfur-emission-free process of molybdenum carbide synthesis by lime-enhanced molybdenum disulfide reduction with methane, Ind. Eng. Chem. Res., 50(2011), No. 23, p. 13340.CrossRefGoogle Scholar
  23. [23]
    L. Wang, G.H. Zhang, J. Dang, and K.C. Chou, Oxidation roasting of molybdenite concentrate, Trans. Nonferrous Met. Soc. China, 25(2015), No. 12, p. 4167.CrossRefGoogle Scholar
  24. [24]
    T. Ressler, R.E. Jentoft, and J. Wienold, In situ XAS and XRD studies on the formation of Mo suboxides during reduction of MoO3, J. Phys. Chem. B, 104(2000), No. 27, p. 6360.CrossRefGoogle Scholar
  25. [25]
    J.M. Laferty, D.L. Howe, and R.F. Sebenik, Production of Molybdenum Oxide from Ammonium Molybdate Solutions, U.S. Patent, Appl. 4273745.6, 1981.Google Scholar
  26. [26]
    W.A. May, Fluid Bed Reduction to Produce Flowable Molybdenum Metal, U.S. Patent, Appl. 5330557.7, 1994.Google Scholar
  27. [27]
    J. Dang, G.H. Zhang, K.C. Chou, R.G. Reddy, Y. He, and Y.J. Sun, Kinetics and mechanism of hydrogen reduction of MoO3 to MoO2, Int. J. Refract. Met. Hard Mater., 41(2013), p. 216.CrossRefGoogle Scholar
  28. [28]
    J. Dang, G.H. Zhang, and K.C. Chou, Study on kinetics of hydrogen reduction of MoO2, Int. J. Refract. Met. Hard Mater., 41(2013), p. 356.CrossRefGoogle Scholar
  29. [29]
    D.A. Porter, K.E. Easterling, and M. Sherif, Phase Transformations in Metals and Alloys, CRC Press, Florida, 2009, p. 131.Google Scholar
  30. [30]
    C.S. Smith, Grain shapes and other metallurgical applications of topology, Metallogr. Microstruct. Anal., 4(2015), No. 6, p. 543.CrossRefGoogle Scholar

Copyright information

© University of Science and Technology Beijing and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Guo-hua Zhang
    • 1
  • He-qiang Chang
    • 1
  • Lu Wang
    • 1
  • Kuo-chih Chou
    • 1
  1. 1.State Key Laboratory of Advanced MetallurgyUniversity of Science and Technology BeijingBeijingChina

Personalised recommendations