Skip to main content

Optimization of an innovative approach involving mechanical activation and acid digestion for the extraction of lithium from lepidolite

Abstract

The recovery of lithium from hard rock minerals has received increased attention given the high demand for this element. Therefore, this study optimized an innovative process, which does not require a high-temperature calcination step, for lithium extraction from lepidolite. Mechanical activation and acid digestion were suggested as crucial process parameters, and experimental design and response-surface methodology were applied to model and optimize the proposed lithium extraction process. The promoting effect of amorphization and the formation of lithium sulfate hydrate on lithium extraction yield were assessed. Several factor combinations led to extraction yields that exceeded 90%, indicating that the proposed process is an effective approach for lithium recovery.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    T.T Hien-Dinh, V.T. Luong, R. Gieré, and T. Tran, Extraction of lithium from lepidolite via iron sulphide roasting and water leaching, Hydrometallurgy, 153(2015), p. 154.

    Article  Google Scholar 

  2. [2]

    V.T. Luong, D.G. Kang, J.W. An, J.M. Kim, and T. Tran, Factors affecting the extraction of lithium from lepidolite, Hydrometallurgy, 134-135(2013), p 54.

    Article  Google Scholar 

  3. [3]

    V.T. Luong, D.J. Kang, J.W. An, D.A. Dao, M.J. Kim, and T. Tran, Iron sulphate roasting for extraction of lithium from lepidolite, Hydrometallurgy, 141(2014), p. 8.

    Article  Google Scholar 

  4. [4]

    Q. Yan, X. Li, Z. Yin, Z. Wang, U. Guo, W. Peng, and Q. Hu, A novel process for extracting lithium from lepidolite, Hydrometallurgy, 121-124(2012), p. 54.

    Article  Google Scholar 

  5. [5]

    Q. Yan, X. Li, Z. Wang, X. Wu, H. Guo, Q. Hu, W. Peng, and J. Wang, Extraction of valuable metals from lepidolite, Hydrometallurgy, 117-118(2012), p. 116.

    Article  Google Scholar 

  6. [6]

    Q. Yan, X. Li, Z. Wang, X. Wu, J. Wang, H. Guo, Q. Hu, and W. Peng, Extraction of lithium from lepidolite by sulfation roasting and water leaching, Int. J. Miner. Process., 110-111(2012), p. 1.

    Article  Google Scholar 

  7. [7]

    Q. Yan, X. Li, Z. Wang, J. Wang, H. Guo, Q. Hu, W. Peng, and X. Wu, Extraction of lithium from lepidolite using chlorination roasting−water leaching process, Trans. Nonferrous Met. Soc. China, 22(2012), p. 1753.

    Article  Google Scholar 

  8. [8]

    J. Kondás, and J. Jandová, Lithium extraction from zinnwaldite wastes after gravity dressing of Sn-W ores, Acta Metall. Slovaca, 12(2006), p. 197.

    Google Scholar 

  9. [9]

    J. Jandová, H.N. Vu, T. Belková, P. Dvorák, and J. Kondás, Obtaining Li2CO3 from zinnwaldite wastes, Ceram. Silik., 53(2009), No. 2, p. 108.

    Google Scholar 

  10. [10]

    H. Vu, J. Bernardi, J. Jandová, L. Vaculíková, and V. Goliáš, Lithium and rubidium extraction from zinnwaldite by alkali digestion process: Sintering mechanism and leaching kinetics, Int. J. Miner. Process., 123(2013), p. 9.

    Article  Google Scholar 

  11. [11]

    J. Jandová, P. Dvorak, H.N. and Vu, Processing of zinnwaldite waste to obtain Li2CO3, Hydrometallurgy, 103(2010), p. 12.

    Article  Google Scholar 

  12. [12]

    O. Sitando and P.L. Crouse, Processing of a Zimbabwean petalite to obtain lithium carbonate, Int. J. Miner. Process., 102-103(2012), p. 45.

    Article  Google Scholar 

  13. [13]

    L.I. Barbosa, G. Valente, R.P. Orosco, and J.A. González, Lithium extraction from β-spodumene through chlorination with chlorine gas, Miner. Eng., 56(2014), p. 29.

    Article  Google Scholar 

  14. [14]

    E. Siame and R.D. Pascoe, Extraction of lithium from micaceous waste from china clay production, Miner. Eng., 24(2011), p. 1595.

    Article  Google Scholar 

  15. [15]

    N. Vieceli, C.A. Nogueira, M.F.C. Pereira, F.O. Durão, C. Guimarães, and F. Margarido, Optimization of lithium extraction from lepidolite by roasting using sodium and calcium sulfates, Miner. Process. Extr. Metall. Rev., 38(2017), No. 1, p. 62.

    Article  Google Scholar 

  16. [16]

    N. Vieceli, C.A. Nogueira, M.F.C. Pereira, A.P.S. Dias, F.O. Durão, C. Guimarães, and F. Margarido, Effects of mechanical activation on lithium extraction from a lepidolite ore concentrate, Miner. Eng., 102(2017), p. 1.

    Article  Google Scholar 

  17. [17]

    TEMA Machinery Ltd., Laboratory Disc Mill [2016-08-01]. http://www.tema.co.uk/products/tema-mill/laboratory-disc-mill.

  18. [18]

    D.C. Montgomery, Design and Analysis of Experiments, 8th Ed., John Wiley & Sons, Inc., USA, New Jersey, 2012, p. 752.

    Google Scholar 

  19. [19]

    Met-Chem Canada Inc., Feasibility Study on the Whabouchi Lithium Deposit and Hydromet Plant, NI 43-101 Technical Report, Prepared for Nemaska Lithium Inc, 2014.

    Google Scholar 

  20. [20]

    T.N.A.S.T. Mustafa, S.R.R. Munusamy, D.N.U. Lan, and N.F.M. Yunos, Physical and structural transformations of Perlis carbonate rocks via mechanical activation route, Procedia Chem., 19(2016), p. 673.

    Article  Google Scholar 

  21. [21]

    P. Baláž, Mechanochemistry in Nanoscience and Minerals Engineering, 1st Ed., Springer-Verlag Berlin Heidelberg, Berlin, 2008, p. 413.

    Google Scholar 

Download references

Acknowledgements

The author N. Vieceli acknowledges the doctorate grant ref. 9244/13-1 supplied by CAPES Foundation, Ministry of Education of Brazil. The authors are also very grateful to Felmica Minerais Industriais, S.A. for having kindly provided the lepidolite ore used in the tests.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nathália Vieceli.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vieceli, N., Nogueira, C.A., Pereira, M.F.C. et al. Optimization of an innovative approach involving mechanical activation and acid digestion for the extraction of lithium from lepidolite. Int J Miner Metall Mater 25, 11–19 (2018). https://doi.org/10.1007/s12613-018-1541-7

Download citation

Keywords

  • lepidolite
  • lithium
  • mechanical activation
  • acid digestion
  • optimization
  • extraction