Skip to main content
Log in

Effects of size reduction on deformation, microstructure, and surface roughness of micro components for micro metal injection molding

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

The fabrication of 17-4PH micro spool mandrils by micro metal injection molding was described here. The effects of size reduction on deformation, microstructure and surface roughness were studied by comparing a ϕ500 μm micro post and a ϕ1.7 mm cylinder after debinding and sintering. Experimental results show that slumping of the micro posts occurred due to a dramatic increase in outlet vapor pressure initiated at the thermal degradation onset temperature and the moment of gravity. Asymmetrical stress distribution within the micro component formed during the cooling stage may cause warping. Prior solvent debinding and adjustment in a thermal debinding scheme were useful for preventing the deformation of the micro components. Smaller grain size and higher micro hardness due to impeded grain growth were observed for the micro posts compared with the ϕ1.7 mm cylinder. Surface roughness increased with distance from the gate of the micro spool mandril due to melt front advancement during mold filling and the ensuing pressure distribution. At each position, surface roughness was dictated by injection molding and increased slightly after sintering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.W. Deng, R. Chen, Q. Sun, and X.N. Li, Microstructural study of 17-4PH stainless steel after plasma-transferred arc welding, Material, 8(2015), No. 2, p. 424.

    Article  Google Scholar 

  2. H.Z. Ye, X.Y. Liu, and H.P. Hong, Sintering of 17-4PH stainless steel feedstock for metal injection molding, Mater. Lett., 62(2008), No. 19, p. 3334.

    Article  Google Scholar 

  3. L. Liu, N.H. Loh, B.Y. Tay, and S.B. Tor, Microstructure evolution of 316L stainless steel micro components prepared by micro powder injection molding, Powder Technol., 206(2011), No. 3, p. 246.

    Article  Google Scholar 

  4. M.J Sulaiman, N. Johari, M.A. Ahmad, R.B. Ibrahim, A.R.A. Talib, and M.Y. Harmin, Solvent debinding of inconel 718 fabricated via metal injection molding, Adv. Mater. Res., 1133(2016), p. 275.

    Article  Google Scholar 

  5. P. Imgrund, A. Rota, and A. Simchi, Micro injection molding of 316L/17-4PH and 316L/Fe powders for fabrication of magnetic–nonmagnetic bimetals, J. Mater. Process. Technol., 200(2008), No. 1-3, p. 259.

    Article  Google Scholar 

  6. Y. Shengjie, Y.C. Lam, and J.C. Chai, Evolution of liquid- bond strength in powder injection molding compact during thermal debinding: numerical simulation, Modell. Simul. Mater. Sci. Eng., 12(2004), No. 4, p. 311.

    Article  Google Scholar 

  7. L. Gorjan, A. Dakskobler, and T. Kosmac, Partial wick-debinding of low-pressure powder injection-molded ceramic parts, J. Eur. Ceram. Soc., 30(2010), No. 15, p. 3013.

    Article  Google Scholar 

  8. I.M. Somasundram, A. Cendrowicz, and M.L. Johns, 2-D simulation of wick debinding for ceramic parts in close proximity, Chem. Eng. Sci., 65(2010), No. 22, p. 5990.

    Article  Google Scholar 

  9. F.A. Çetinel, W. Bauer, R. Knitter, and J. Haußelt, Factors affecting strength and shape retention of zirconia micro bending bars during thermal debinding, Ceram. Int., 37(2011), No. 7, p. 2809.

    Article  Google Scholar 

  10. K. Sharmin and I. Schoegl, Two-step debinding and co-extrusion of ceramic-filled PEBA and EVA blends, Ceram. Int., 40(2014), No. 9, p. 14871.

    Article  Google Scholar 

  11. S.B. Guo, A.M. Chu, H.J. Wu, C.B. Cai, and X.H. Qu, Effect of sintering processing on microstructure, mechanical properties and corrosion resistance of Ti–24Nb–4Zr–7.9Sn alloy for biomedical applications, J. Alloys Compd., 597(2014), No. 6, p. 211.

    Article  Google Scholar 

  12. C. Ren, Z.Z. Fang, H. Zhang, and M. Koopman, The study on low temperature sintering of nano-tungsten powders, Int. J. Refract. Met. Hard Mater., 61(2016), No. 6, p. 273.

    Article  Google Scholar 

  13. A. Simchi, A. Rota, and P. Imgrund, An investigation on the sintering behavior of 316L and 17-4PH stainless steel powders for graded composites, Mater. Sci. Eng. A, 424(2006), No. 1-2, p. 282.

    Article  Google Scholar 

  14. Y.X. Wu, R.M. German, D. Blaine, B. Marx, and C. Schlaefer, Effects of residual carbon content on sintering shrinkage, microstructure and mechanical properties of injection molded 17-4 PH stainless steel, J. Mater. Sci., 37(2002), No. 17, p. 3573.

    Article  Google Scholar 

  15. H.J. Sung, T.K. Ha, S. Ahn, and Y.W. Chang, Powder injection molding of a 17-4 PH stainless steel and the effect of sintering temperature on its microstructure and mechanical properties, J. Mater. Process. Technol., 130-131(2002), No. 2, p. 321.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51304214) and the Beijing College Students’ Entrepreneurial Action Plan Project. This study was partially supported by the National Key Scientific Apparatus Development of Special Item (No. 2012YQ030126).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Wang, Xd., Li, X. et al. Effects of size reduction on deformation, microstructure, and surface roughness of micro components for micro metal injection molding. Int J Miner Metall Mater 24, 1021–1026 (2017). https://doi.org/10.1007/s12613-017-1491-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-017-1491-5

Keywords

Navigation