Effect of cryogenic rolling and annealing on the microstructure evolution and mechanical properties of 304 stainless steel


Metastable 304 austenitic stainless steel was subjected to rolling at cryogenic and room temperatures, followed by annealing at different temperatures from 500 to 950°C. Phase transition during annealing was studied using X-ray diffractometry. Transmission electron microscopy and electron backscattered diffraction were used to characterize the martensite transformation and the distribution of austenite grain size after annealing. The recrystallization mechanism during cryogenic rolling was a reversal of martensite into austenite and austenite growth. Cryogenic rolling followed by annealing refined grains to 4.7 μm compared with 8.7 μm achieved under room-temperature rolling, as shown by the electron backscattered diffraction images. Tensile tests showed significantly improved mechanical properties after cryogenic rolling as the yield strength was enhanced by 47% compared with room-temperature rolling.

This is a preview of subscription content, access via your institution.


  1. [1]

    C. Herrera, R.L. Plaut, and A.F. Padilha, Microstructural refinement during annealing of plastically deformed austenitic stainless steels, Mater. Sci. Forum, 550(2007), p. 423.

    Article  Google Scholar 

  2. [2]

    B.R. Kumar, S.K. Das, B. Mahato, and R.N. Ghosh, Role of strain-induced martensite on microstructural evolution during annealing of metastable austenitic stainless steel, J. Mater. Sci., 45(2010), No. 4, p. 911.

    Article  Google Scholar 

  3. [3]

    A.F. Padilha, R.L. Plaut, and P.R. Rios, Annealing of cold-worked austenitic stainless steels, ISIJ Int., 43(2003), No. 2, p. 135.

    Article  Google Scholar 

  4. [4]

    R.D.K. Misra, Z. Zhang, P.K.C. Venkatasurya, M.C. Somani, and L.P. Karjalainen, The effect of nitrogen on the formation of phase reversion-induced nanograined/ultrafine-grained structure and mechanical behavior of a Cr–Ni–N steel, Mater. Sci. Eng. A, 528(2011), No. 3, p. 1889.

    Article  Google Scholar 

  5. [5]

    R.Z. Valiev, N.A. Krasilnikov, and N.K. Tsenev, Plastic deformation of alloys with submicron-grained structure, Mater. Sci. Eng. A, 137(1991), p. 35.

    Article  Google Scholar 

  6. [6]

    D. Jia, Y.M. Wang, K.T. Ramesh, E. Ma, Y.T. Zhu, and R.Z. Valiev, Deformation behavior and plastic instabilities of ultrafine- grained titanium, Appl. Phys. Lett., 79(2001), No. 5, p. 611.

    Article  Google Scholar 

  7. [7]

    Y. Iwahashi, J.T. Wang, Z. Horita, M. Nemoto, and T.G. Langdon, Principle of equal-channel angular pressing for the processing of ultra-fine grained materials, Scripta Mater., 35(1996), No. 2, p. 143.

    Article  Google Scholar 

  8. [8]

    Y. Ivanisenko, R.K. Wunderlich, R.Z. Valiev, and H.J. Fecht, Annealing behaviour of nanostructured carbon steel produced by severe plastic deformation, Scripta Mater., 49(2003), No. 10, p. 947.

    Article  Google Scholar 

  9. [9]

    F.K. Yan, N.R. Tao, and K. Lu, Tensile ductility of nanotwinned austenitic grains in an austenitic steel, Scripta Mater., 84-85(2014), p. 31.

    Article  Google Scholar 

  10. [10]

    Y.F. Shen, X.X. Li, X. Sun, Y.D. Wang, and L. Zuo, Twinning and martensite in a 304 austenitic stainless steel, Mater. Sci. Eng. A, 552(2012), p. 514.

    Article  Google Scholar 

  11. [11]

    J.L. Lv and H.Y. Luo, Effect of nano/ultrafine grain with orientation obtained by reversion transformation on tensile behaviour of austenitic stainless steel, Mater. Sci. Technol., 29(2013), No. 4, p. 456.

    Article  Google Scholar 

  12. [12]

    K.L. Ye, H.Y. Luo, and J.L. Lv, Producing nanostructured 304 stainless steel by rolling at cryogenic temperature, Mater. Manuf. Processes, 29(2014), No. 6, p. 754.

    Article  Google Scholar 

  13. [13]

    M.A. Meyers, Y.B. Xu, Q. Xue, M.T. Pérez-Prado, and T.R. McNelley, Microstructural evolution in adiabatic shear localization in stainless steel, Acta Mater., 51(2003), No. 5, p. 1307.

    Article  Google Scholar 

  14. [14]

    L. Lu, X.H. Chen, X.X. Huang, and K. Lu, Revealing the maximum strength in nanotwinned copper, Science, 323(2009), No. 5914, p. 607.

    Article  Google Scholar 

  15. [15]

    W.S. Lee and C.F. Lin, Comparative study of the impact response and microstructure of 304L stainless steel with and without prestrain, Metall. Trans. A, 33(2002), No. 9, p. 2801.

    Article  Google Scholar 

  16. [16]

    W.S. Lee, C.F. Lin, T.H. Chen, and M.C. Yang, High temperature microstructural evolution of 304L stainless steel as function of pre-strain and strain rate, Mater. Sci. Eng. A, 527(2010), No. 13-14, p. 3127.

    Article  Google Scholar 

  17. [17]

    P.L. Sun, Y.H. Zhao, J.C. Cooley, M.E. Kassner, Z. Horita, T.G. Langdon, E.J. Lavernia, and Y.T. Zhu, Effect of stacking fault energy on strength and ductility of nanostructured alloys: an evaluation with minimum solution hardening, Mater. Sci. Eng. A, 525(2009), No. 1-2, p. 83.

    Article  Google Scholar 

  18. [18]

    Y.F. Shen, X.M. Zhao, X. Sun, Y.D. Wang, and L. Zuo, Ultrahigh strength of ultrafine grained austenitic stainless steel induced by accumulative rolling and annealing, Scripta Mater., 2014. http://doi.org/10.1016/j.scriptamat.2014.05.001.

    Google Scholar 

  19. [19]

    B.R. Kumar and D. Raabe, Tensile deformation characteristics of bulk ultrafine-grained austenitic stainless steel produced by thermal cycling, Scripta Mater., 66(2012), No. 9, p. 634.

    Article  Google Scholar 

  20. [20]

    S. Sabooni, F. Karimzadeh, M.H. Enayati, and A.H.W. Ngan, The role of martensitic transformation on bimodal grain structure in ultrafine grained AISI 304L stainless steel, Mater. Sci. Eng. A, 636(2015), p. 221.

    Article  Google Scholar 

  21. [21]

    J. Das, Evolution of nanostructure in a-brass upon cryorolling, Mater. Sci. Eng. A, 530(2011), No. 1, p. 675.

    Article  Google Scholar 

  22. [22]

    B. Roy, N.K. Kumar, P.M.G. Nambissan, and J. Das, Evolution and interaction of twins, dislocations and stacking faults in rolled a-brass during nanostructuring at sub-zero temperature, AIP Adv., 4(2014), No. 6, art. No. 067101.

    Google Scholar 

  23. [23]

    N.K. Kumar, B. Roy, and J. Das, Effect of twin spacing, dislocation density and crystallite size on the strength of nanostructured a-brass, J. Alloys Compd., 618(2015), p. 139.

    Article  Google Scholar 

  24. [24]

    V.A. Moskalenko, A.R. Smirnov, and R.V. Smolyanets, Low-temperature plastic deformation and strain-hardening of nanocrystalline titanium, Low Temp. Phys., 40(2014), p. 837.

    Article  Google Scholar 

  25. [25]

    B. Roy, R. Kumar, and J. Das, Effect of cryorolling on the microstructure and tensile properties of bulk nano-austenitic stainless steel, Mater. Sci. Eng. A, 631(2015), p. 241.

    Article  Google Scholar 

  26. [26]

    P.Y. Li, Y. Xiong, L.F. Chen, F.Z. Ren, and X.G. Wang, Effect of cryorolling on microstructure and mechanical properties of AISI 310S stainless steel, Trans. Mater. Heat Treat., 36(2015), No. 3, p. 112.

    Google Scholar 

  27. [27]

    Y. Xiong, J.B. Wang, L.F. Chen, Y. Lu, F.Z. Ren, L.L. Zhang, and J.L. Ma, Effect of annealing process on microstructure and mechanical properties of cryorolled AISI310S austenite stainless steel, Trans. Mater. Heat Treat., 37(2016), No. 4, p. 101.

    Google Scholar 

  28. [28]

    J.T. Shi, L.G. Hou, J.R. Zuo, L. Lu, H. Cui, and J.S. Zhang, Quantitative analysis of the martensite transformation and microstructure characterization during cryogenic rolling of a 304 austenitic stainless steel, Acta Metall. Sin., 52(2016), No. 8, p. 945.

    Google Scholar 

  29. [29]

    N.H. Moser, T.S. Gross, and Y.P. Korkolis, Martensite formation in conventional and isothermal tension of 304 austenitic stainless steel measured by X-ray diffraction, Metall. Mater. Trans. A, 45(2014), No. 11, p. 4891.

    Article  Google Scholar 

  30. [30]

    B.D. Cullity and S.R. Stock, Elements of X-ray Diffraction, 3rd Ed., Prentice Hall, New Jersey, 2001, p. 40.

    Google Scholar 

  31. [31]

    A.K. De, D.C. Murdock, M.C. Mataya, J.G. Speer, and D.K. Matlock, Quantitative measurement of deformation-induced martensite in 304 stainless steel by X-ray diffraction, Scripta Mater., 50(2004), No. 12, p. 1445.

    Article  Google Scholar 

  32. [32]

    X.M. Huang and T. Jie, Material Analysis Test Method, National Defense Industry Press, Beijing, 2008, p. 206.

    Google Scholar 

  33. [33]

    Z.Y. Xu, Martensite Transformation and Martensite, Science Press, Beijing, 1980, p. 479.

    Google Scholar 

  34. [34]

    T. Shintani and Y. Murata, Evaluation of the dislocation density and dislocation character in cold rolled type 304 steel determined by profile analysis of X-ray diffraction, Acta Mater., 59(2011), No. 11, p. 4314.

    Article  Google Scholar 

  35. [35]

    W.M. Mao and X.B. Zhao, Recrystallization and Grain Growth, Metallurgical Industry Press, Beijing, 1994, p. 218.

    Google Scholar 

  36. [36]

    F. Forouzan, A. Kermanpur, A. Najafizadeh, and A. Hedayati, Processing of nano/submicron grained stainless steel 304L by an advanced thermomechanical process, Int. J. Mod. Phys. Conf. Ser., 5(2012), p. 383.

    Article  Google Scholar 

  37. [37]

    I. Shakhova, V. Dudko, A. Belyakov, K. Tsuzaki, and R. Kaibyshev, Effect of large strain cold rolling and subsequent annealing on microstructure and mechanical properties of an austenitic stainless steel, Mater. Sci. Eng. A, 545(2012), p. 176.

    Article  Google Scholar 

  38. [38]

    Y.Q. Ma, J.E. Jin, and Y.K. Lee, A repetitive thermomechanical process to produce nano-crystalline in a metastable austenitic steel, Scripta Mater., 52(2005), No. 12, p. 1311.

    Article  Google Scholar 

Download references


This work was financially supported by the National Key Project of Research and Development Program of China (No. 2016YFB0300801), the National Natural Science Foundation of China (No. 51401016), and State Key Laboratory for Advanced Metals and Materials of China.

Author information



Corresponding authors

Correspondence to Long-gang Hou or Ji-shan Zhang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shi, Jt., Hou, Lg., Zuo, Jr. et al. Effect of cryogenic rolling and annealing on the microstructure evolution and mechanical properties of 304 stainless steel. Int J Miner Metall Mater 24, 638–645 (2017). https://doi.org/10.1007/s12613-017-1446-x

Download citation


  • stainless steel
  • cryogenic rolling
  • annealing
  • microstructural evolution
  • mechanical properties
  • recrystallization