Topography, structure, and formation kinetic mechanism of carbon deposited onto nickel in the temperature range from 400 to 850°C

  • Zhi-yuan Chen
  • Liu-zhen Bian
  • Li-jun Wang
  • Zi-you Yu
  • Hai-lei Zhao
  • Fu-shen Li
  • Kuo-chih Chou
Article
  • 46 Downloads

Abstract

The carbon deposition behavior on nickel particles was observed within the temperature range from 400 to 800°C in a pure methane atmosphere. The topography, properties, and molecular structure of the deposited carbon were investigated using field-emission scanning electron microscopy (FESEM), temperature-programmed oxidation (TPO) technology, X-ray diffraction (XRD), and Raman spectroscopy. The deposited carbon is present in the form of a film at 400–450°C, as fibers at 500–600°C, and as particles at 650–800°C. In addition, the structure of the deposited carbon becomes more ordered at higher temperatures because both the TPO peak temperature of deposited carbon and the Raman shift of the G band increase with the increase in experimental temperature, whereas the intensity ratio between the D bands and the G band decreases. An interesting observation is that the carbon deposition rate is suppressed in the medium-temperature range (M-T range) and the corresponding kinetic mechanism changes. Correspondingly, the FWHM of the G and D1 bands in the Raman spectrum reaches a maximum and the intensities of the D2, D3, and D4 bands decrease to low limits in the M-T range. These results indicate that carbon structure parameters exhibit two different tendencies with respect to varying temperature. Both of the two group parameters change dramatically as a peak function with increasing reaction temperature within the M-T range.

Keywords

nickel carbon deposition kinetic mechanisms solid oxide fuel cells 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was financially supported by the National Program on Key Basic Research Project of China (No. 2012CB215405), the China Postdoctoral Science Foundation (No. 2015M570036), and the National Natural Science Foundation of China (No. 51174022). The authors are immensely grateful to the kind help of Prof. Sridhar Seetharaman with the English writing.

References

  1. [1]
    M.N. Pérez-Camacho, J. Abu-Dahrieh, A. Goguet, K.N. Sun, and D. Rooney, Self-cleaning perovskite type catalysts for the dry reforming of methane, Chin. J. Catal., 35(2014, No. 8, 1337.CrossRefGoogle Scholar
  2. [2]
    J. Kuhn and O. Kesler, Method for in situ carbon deposition measurement for solid oxide fuel cells, J. Power Sources, 246(2014, 430.CrossRefGoogle Scholar
  3. [3]
    M. Yoshinaga, H. Kishimoto, M.E. Brito, K. Yamaji, T. Horita, and H. Yokokawa, Carbon deposition map for nickel particles onto oxide substrates analyzed by micro-Raman spectroscopy, J. Ceram. Soc. Jpn., 119(2011, No. 1388, 307.CrossRefGoogle Scholar
  4. [4]
    T. Chen, W.G. Wang, H. Miao, T.S. Li, and C. Xu, Evaluation of carbon deposition behavior on the nickel/yttrium-stabilized zirconia anode-supported fuel cell fueled with simulated syngas, J. Power Sources, 196(2011, No. 5, 2461.CrossRefGoogle Scholar
  5. [5]
    E.D. German and M. Sheintuch, Predicting CH4 dissociation kinetics on metals: trends, sticking coefficients, H tunneling, and kinetic isotope effect, J. Phys. Chem. C, 117(2013, No. 44, 22811.CrossRefGoogle Scholar
  6. [6]
    W.W. Ma, Z.P. Zhou, G. Li, and P. Li, Effect of catalyst film thickness on growth morphology, surface wettability and drag reduction property of carbon nanotubes, High Temp. Mater. Processes, 35(2016, No. 9, 857.Google Scholar
  7. [7]
    C.M. Finnerty, N.J. Coe, R.H. Cunningham, and R.M. Ormerod, Carbon formation on and deactivation of nickel-based/zirconia anodes in solid oxide fuel cells running on methane, Catal. Today, 46(1998), No.2-3, p. 137.CrossRefGoogle Scholar
  8. [8]
    I. Alstrup, M.T. Tavares, C.A. Bernardo, O. Sørensen, and J.R. Rostrup-Nielsen, Carbon formation on nickel and nickel-copper alloy catalysts, Mater. Corros., 49(1998, No. 5, 367.CrossRefGoogle Scholar
  9. [9]
    P.E. Nolan, D.C. Lynch, and A.H. Cutler, Carbon deposition and hydrocarbon formation on group VIII metal catalysts, J. Phys. Chem. B, 102(1998, No. 21, 4165.CrossRefGoogle Scholar
  10. [10]
    M.L. Toebes, J.H. Bitter, A.J.V. Dillen, and K.P.D. Jong, Impact of the structure and reactivity of nickel particles on the catalytic growth of carbon nanofibers, Catal. Today, 76(2002, No. 1, 33.CrossRefGoogle Scholar
  11. [11]
    C. Su, R. Ran, W. Wang, and Z.P. Shao, Coke formation and performance of an intermediate-temperature solid oxide fuel cell operating on dimethyl ether fuel, J. Power Sources, 196(2011, No. 4, 1967.CrossRefGoogle Scholar
  12. [12]
    G.G. Kuvshinov, Y.I. Mogilnykh, D.G. Kuvshinov, V.I. Zaikovskii, and L.B. Avdeeva, Peculiarities of filamentous carbon formation in methane decomposition on Ni-containing catalysts, Carbon, 36(1998), No.1-12, p. 87.CrossRefGoogle Scholar
  13. [13]
    Y.D. Li, J.L. Chen, Y.N. Qin, and L. Chang, Simultaneous production of hydrogen and nanocarbon from decomposition of methane on a nickel-based catalyst, Energy Fuels, 14(2000, No. 6, 1188.CrossRefGoogle Scholar
  14. [14]
    K. Asai, Y. Nagayasu, K. Takane, S. Iwamoto, E. Yagasaki, K.I. Ishii, and M. Inoue, Mechanisms of methane decomposition over Ni catalysts at high temperatures, J. Jpn. Pet. Inst., 51(2008, No. 1, 42.CrossRefGoogle Scholar
  15. [15]
    J.L. Figueiredo, Carbon deposition leading to filament growth on metals, Mater. Corros., 49(1998, No. 5, 373.CrossRefGoogle Scholar
  16. [16]
    M. Inoue, K. Asai, Y. Nagayasu, K. Takane, S. Iwamoto, E. Yagasaki, and K.I. Ishii, Formation of multi-walled carbon nanotubes by Ni-catalyzed decomposition of methane at 600–750°C, Diamond Relat. Mater., 17(2008,No. 7–10), 1471.CrossRefGoogle Scholar
  17. [17]
    J. Rostrup-Nielsen and D.L. Trimm, Mechanisms of carbon formation on nickel-containing catalysts, J. Catal., 48(1977,No. 1–3), 155.CrossRefGoogle Scholar
  18. [18]
    Y.Z. Wang, F. Yoshiba, M. Kawase, and T. Watanabe, Performance and effective kinetic models of methane steam reforming over Ni/YSZ anode of planar SOFC, Int. J. Hydrogen Energy, 34(2009, No. 9, 3885.CrossRefGoogle Scholar
  19. [19]
    K.H. Hou and R. Hughes, The kinetics of methane steam reforming over a Ni/a–Al2O3 catalyst, Chem. Eng. J., 82(2001,No. 1–3), 311.CrossRefGoogle Scholar
  20. [20]
    J.G. Xu and G.F. Froment, Methane steam reforming, methanation and water–gas shift: I. Intrinsic kinetics, AIChE J., 35(1989, No. 1, 88.CrossRefGoogle Scholar
  21. [21]
    H.S. Bengaard, J.K. Nørskov, J. Sehested, B.S. Clausen, L.P. Nielsen, A.M. Molenbroek, and J.R. Rostrup-Nielsen, Steam reforming and graphite formation on Ni catalysts, J. Catal., 209(2002, No. 2, 365.CrossRefGoogle Scholar
  22. [22]
    N.M. Rodriguez, M.S. Kim, F. Fortin, I. Mochida, and R.T.K. Baker, Carbon deposition on iron–nickel alloy particles, Appl. Catal. A, 148(1997, No. 2, 265.CrossRefGoogle Scholar
  23. [23]
    C. Su, Y.Z. Wu, W. Wang, Y. Zheng, R. Ran, and Z.P. Shao, Assessment of nickel cermets and La0.8Sr0.2Sc0.2Mn0.8O3 as solid-oxide fuel cell anodes operating on carbon monoxide fuel, J. Power Sources, 195(2010, No. 5, 1333.CrossRefGoogle Scholar
  24. [24]
    J. Shi and O. Nittono, Formation of Ni3C nanocrystallites in codeposited Ni–C films, J. Mater. Sci. Lett., 15(1996, No. 11, 928.CrossRefGoogle Scholar
  25. [25]
    R.P.W.J. Struis, D. Bachelin, C. Ludwig, and A. Wokaun, Studying the formation of Ni3C from Co and metallic Ni at T = 265°C in situ using Ni K-edge X-ray absorption spectroscopy, J. Phys. Chem. C, 113(2009, No. 6, 2443.CrossRefGoogle Scholar
  26. [26]
    F. Banhart, Interactions between metals and carbon nanotubes: at the interface between old and new materials, Nanoscale, 1(2009, No. 2, 201.CrossRefGoogle Scholar
  27. [27]
    K.P.D. Jong and J.W. Geus, Carbon nanofibers: catalytic synthesis and applications, Catal. Rev., 2(2000, No. 4, 481.CrossRefGoogle Scholar
  28. [28]
    C.D. Sheng, Char structure characterised by Raman spectroscopy and its correlations with combustion reactivity, Fuel, 86(2007, No. 15, 2316.CrossRefGoogle Scholar
  29. [29]
    H. Bakhshi, A. Shokuhfar, and N. Vahdati, Synthesis and characterization of carbon-coated cobalt ferrite nanoparticles, Int. J. Miner. Metall. Mater., 23(2016, No. 9, 1104.CrossRefGoogle Scholar
  30. [30]
    Y.G. Shi, Y. Hao, D. Wang, J.C. Zhang, P. Zhang, X.F. Shi, D. Han, Z. Chai, and J.D. Yan, Effects of the flow rate of hydrogen on the growth of graphene, Int. J. Miner. Metall. Mater., 22(2015, No. 1, 102.CrossRefGoogle Scholar
  31. [31]
    R.C. Maher, V. Duboviks, G.J. Offer, M. Kishimoto, N.P. Brandon, and L.F. Cohen, Raman spectroscopy of solid oxide fuel cells: technique overview and application to carbon deposition analysis, Fuel Cells, 13(2013, No. 4, 455.CrossRefGoogle Scholar
  32. [32]
    Z.Y. Wu, S.Q. Hu, and Z.Q. Wang, Simple method to rapidly fabricate chain-like carbon nanotube films and its field emission properties, Int. J. Miner. Metall. Mater., 17(2010, No. 3, 371.CrossRefGoogle Scholar
  33. [33]
    A. Sadezky, H. Muckenhuber, H. Grothe, R. Niessner, and U. Pöschl, Raman microspectroscopy of soot and related carbonaceous materials: spectral analysis and structural information, Carbon, 43(2005, No. 8, 1731.CrossRefGoogle Scholar
  34. [34]
    A. Zaida, E. Bar-Ziv, L.R. Radovic, and Y.J. Lee, Further development of Raman microprobe spectroscopy for characterization of char reactivity, Proc. Combust. Inst., 31(2007, No. 2, 1881.CrossRefGoogle Scholar
  35. [35]
    R.J. Nemanich and S.A. Solin, First- and second-order Raman scattering from finite-size crystals of graphite, Phys. Rev. B, 20(1979, No. 2, 392.CrossRefGoogle Scholar
  36. [36]
    F. Li and J.S. Lannin, Disorder induced Raman scattering of nanocrystalline carbon, Appl. Phys. Lett., 61(1992, No. 17, 2116.CrossRefGoogle Scholar
  37. [37]
    W.S. Bacsa, J.S. Lannin, D.L. Pappas, and J.J. Cuomo, Raman scattering of laser-deposited amorphous carbon, Phys. Rev. B, 47(1993, No. 16, 10931.CrossRefGoogle Scholar
  38. [38]
    X.F. Li, A. Dhanabalan, and C.L. Wang, Enhanced electrochemical performance of porous NiO–Ni nanocomposite anode for lithium ion batteries, J. Power Sources, 196(2011, No. 22, 9625.CrossRefGoogle Scholar
  39. [39]
    J. Pérez-Ramirez, G. Mul, and J.A. Moulijn, In situ Fourier transform infrared and laser Raman spectroscopic study of the thermal decomposition of Co–Al and Ni–Al hydrotalcites, Vib. Spectrosc., 27(2001, No. 1, 75.CrossRefGoogle Scholar
  40. [40]
    A.L. Pinheiro, A.N. Pinheiro, A. Valentini, J.M. Filho, F.F.D. Sousa, J.R.D. Sousa, M.D.G.C. Rocha, P. Bargiela, and A.C. Oliveira, Analysis of coke deposition and study of the structural features of MAl2O4 catalysts for the dry reforming of methane, Catal. Commun., 11(2009, No. 1, 11.CrossRefGoogle Scholar
  41. [41]
    M.S. Dresselhaus, G. Dresselhaus, R. Saito, and A. Jorio, Raman spectroscopy of carbon nanotubes, Phys. Rep., 409(2005, No. 2, 47.CrossRefGoogle Scholar
  42. [42]
    Y. Wang, D.C. Alsmeyer, and R.L. McCreery, Raman spectroscopy of carbon materials: structural basis of observed spectra, Chem. Mater., 2(1990, No. 5, 557.CrossRefGoogle Scholar
  43. [43]
    A.C. Ferrari and J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon, Phys. Rev. B, 61(2000, No. 20, 14095.CrossRefGoogle Scholar
  44. [44]
    S. Reich and C. Thomsen, Raman spectroscopy of graphite, Philos. Trans. R. Soc. London Ser. A, 362(2004, No. 1824, 2271.CrossRefGoogle Scholar
  45. [45]
    D.S. Knight and W.B. White, Characterization of diamond films by Raman spectroscopy, J. Mater. Res., 4(1989, No. 2, 385.CrossRefGoogle Scholar
  46. [46]
    C. Casiraghi, A.C. Ferrari, and J. Robertson, Raman spectroscopy of hydrogenated amorphous carbons, Phys. Rev. B, 72(2005, No. 8, 085401.CrossRefGoogle Scholar
  47. [47]
    T.C. Chieu, M.S. Dresselhaus, and M. Endo, Raman studies of benzene-derived graphite fibers, Phys. Rev. B, 26(1982, No. 10, 5867.CrossRefGoogle Scholar
  48. [48]
    B. Manoj and A.G. Kunjomana, Chemical leaching of an Indian bituminous coal and characterization of the products by vibrational spectroscopic techniques, Int. J. Miner. Metall. Mater., 19(2012, No. 4, 279.CrossRefGoogle Scholar

Copyright information

© University of Science and Technology Beijing and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Zhi-yuan Chen
    • 1
  • Liu-zhen Bian
    • 1
  • Li-jun Wang
    • 1
    • 2
  • Zi-you Yu
    • 1
  • Hai-lei Zhao
    • 3
  • Fu-shen Li
    • 3
  • Kuo-chih Chou
    • 1
    • 2
  1. 1.State Key Laboratory of Advanced MetallurgyUniversity of Science and Technology BeijingBeijingChina
  2. 2.Collaborative Innovation Center of Steel TechnologyUniversity of Science and Technology BeijingBeijingChina
  3. 3.School of Materials Science and EngineeringUniversity of Science and Technology BeijingBeijingChina

Personalised recommendations