Superelasticity of Cu–Ni–Al shape-memory fibers prepared by melt extraction technique


In the paper, a melt extraction method was used to fabricate Cu–4Ni–14Al (wt%) fiber materials with diameters between 50 and 200 μm. The fibers exhibited superelasticity and temperature-induced martensitic transformation. The microstructures and superelasticity behavior of the fibers were studied via scanning electron microscopy (SEM) and a dynamic mechanical analyzer (DMA), respectively. Appropriate heat treatment further improves the plasticity of Cu-based alloys. The serration behavior observed during the loading process is due to the multiple martensite phase transformation.

This is a preview of subscription content, log in to check access.


  1. [1]

    K. Otsuka and C. M. Wayman, Shape Memory Materials, Cambridge University Press, 1999.

    Google Scholar 

  2. [2]

    J. Ma and I. Karaman, Expanding the repertoire of shape memory alloys, Science, 327 (2010), No. 5972, p. 1468.

    Article  Google Scholar 

  3. [3]

    E. Cingolani, M. Ahlers, and J. Van Humbeeck, Stabilization and two-way shape memory effect in Cu-Al-Ni single crystals, Metall. Mater. Trans. A, 30 (1990), No. 3, p. 493.

    Article  Google Scholar 

  4. [4]

    M. Ishibashi, N. Tabata, T. Suetake, T. Omori, Y. Sutou, R. Kainuma, K. Yamauchi, and K. Ishida, A simple method to treat an ingrowing toenail with a shape-memory alloy device, J. Dermatol. Treat., 19 (2008), No. 5, p. 291.

    Article  Google Scholar 

  5. [5]

    S. Seelecke and I. Muller, Shape memory alloy actuators in smart structures: modeling and simulation, Appl. Mech. Rev., 57 (2004), No. 1, p. 23.

    Article  Google Scholar 

  6. [6]

    J. M. Jani, M. Leary, A. Subic, and M. A. Gibson, A review of shape memory alloy research, applications and opportunities, Mater. Des., 56 (2014), p. 1078.

    Article  Google Scholar 

  7. [7]

    V. Recarte, R. B. Pérez-Sáez, E. H. Bocanegra, M. L. Nó, and J. S. Juan, Dependence of the martensitic transformation characteristics on concentration in Cu–Al–Ni shape memory alloys, Mater. Sci. Eng. A, 273-275 (1999), p. 380.

    Article  Google Scholar 

  8. [8]

    K. Otsuka, Origin of memory effect in Cu-Al-Ni alloy, Jpn. J. Appl. Phys., 10 (1971), No. 5, p. 571.

    Article  Google Scholar 

  9. [9]

    B. Malard, P. Sittner, S. Berveiller, and E. Patoor, Advances in martensitic transformations in Cu-based shape memory alloys achieved by in situ neutron and synchrotron X-ray diffraction methods, C. R. Phys., 13 (2012), No. 3, p. 280.

    Article  Google Scholar 

  10. [10]

    Z. Xiao, M. Fang, Z. Li, T. Xiao, and Q. Lei, Structure and properties of ductile CuAlMn shape memory alloy synthesized by mechanical alloying and powder metallurgy, Mater. Des., 58 (2014), p. 451.

    Article  Google Scholar 

  11. [11]

    V. Recarte, R. B. Pérez-Sáez, J. San Juan, E. H. Bocanegra, and L. M. Nó, Influence of Al and Ni concentration on the martensitic transformation in Cu-Al-Ni shape-memory alloys, Metall. Mater. Trans. A, 33 (2002), No. 8, p. 2581.

    Article  Google Scholar 

  12. [12]

    Y. Chen, X. X. Zhang, D. C. Dun, and C. A. Schuh, Shape memory and superelasticity in polycrystalline Cu–Al–Ni microwires, Appl. Phys. Lett., 95(2009), art. No. 171906.

    Article  Google Scholar 

  13. [13]

    Y. Y. Zhao, H. Li, H. Y. Hao, M. Li, Y. Zhang, and P. K. Liaw, Microwires fabricated by glass-coated melt spinning, Rev. Sci. Instrum., 84(2013), art. No. 075102.

    Article  Google Scholar 

  14. [14]

    P. Ochin, A. Dezellus, P. Plaindoux, J. Pons, P. Vermaut, R. Portier, and E. Cesari, Shape memory thin round wires produced by the in rotating water melt-spinning technique, Acta Mater., 54 (2006), No. 7, p. 1877.

    Article  Google Scholar 

  15. [15]

    S. Zeller and J. Gnauk, Shape memory behaviour of Cu–Al wires produced by horizontal in-rotating-liquid-spinning, Mater. Sci. Eng. A, 481-482 (2008), p. 562.

    Article  Google Scholar 

  16. [16]

    C. Gómez-Polo, J. I. Pérez-Landazábal, V. Recarte, and V. Sánchez-Alarcos, G. Badini-Confalonieri, and M. Vázquez, Ni–Mn–Ga ferromagnetic shape memory wires, J. Appl. Phys., 107(2010), No. 12, art. No. 123908.

  17. [17]

    M. Izadinia and K. Dehghani, Structure and properties of nanostructured Cu–13.2Al–5.1Ni shape memory alloy produced by melt spinning, Trans. Nonferrous Met. Soc. China, 21 (2011), No. 9, p. 2037.

    Article  Google Scholar 

  18. [18]

    S. Pourkhorshidi, N. Parvin, M. S. Kenevisi, M. Naeimi, and H. E. Khanik, A study on the microstructure and properties of Cubased shape memory alloy produced by hot extrusion of mechanically alloyed powders, Mater. Sci. Eng. A, 556 (2012), p. 658.

    Article  Google Scholar 

  19. [19]

    A. Ibarra, J. San Juan, E. H. Bocanegra, and M. L. Nó, Thermo-mechanical characterization of Cu–Al–Ni shape memory alloys elaborated by powder metallurgy, Mater. Sci. Eng. A, 438-440 (2006), p. 782.

  20. [20]

    S. M. Tang, C. Y. Chung, and W. G. Liu, Preparation of CuAlNi-based shape memory alloys by mechanical alloying and powder metallurgy method, J. Mater. Process. Technol., 63 (1997), No. 1-3, p. 307.

    Article  Google Scholar 

  21. [21]

    W. Liao, J. Hu, and Y. Zhang, Micro forming and deformation behaviors of Zr50.5Cu27.45Ni13.05Al9 amorphous wires, Intermetallics, 20 (2012), No. 1, p. 82.

    Article  Google Scholar 

  22. [22]

    S. M. Ueland and C. A. Schuh, Superelasticity and fatigue in oligocrystalline shape memory alloy microwires, Acta Mater., 60 (2012), No. 1, p. 282.

    Article  Google Scholar 

  23. [23]

    G. Bertolino, P. A. Larochette, and E. M. Castrodeza, Mechanical properties of martensitic Cu–Zn–Al foams in the pseudoelastic regime, Mater. Lett., 64 (2010), No. 13, p. 1448.

    Article  Google Scholar 

  24. [24]

    Y. Y. Zhao, H. Li, Y. S. Wang, Y. Zhang, and P. K. Liaw, Shape memory and superelasticity in amorphous/nanocrystalline Cu–15. 0 atomic percent (at. %) Sn wires, Adv. Eng. Mater., 16 (2014), No. 1, p. 40.

    Article  Google Scholar 

  25. [25]

    Y. Zhang, M. Li, Y. D. Wang, J. P. Lin, K. A. Dahmen, Z. L. Wang, and P. K. Liaw, Superelasticity and serration behavior in small sized NiMnGa alloys, Adv. Eng. Mater., 16 (2014), No. 8, p. 955.

    Article  Google Scholar 

  26. [26]

    Y. Zhang, W. H. Wang, P. K. Liaw, G. Wang, and J. W. Qiao, Serration and noise behavior in advanced materials, J. Iron Steel Res. Int., 23 (2016), No. 1, p. 1.

    Article  Google Scholar 

  27. [27]

    Y. Zhang, J. W. Qiao, and P. K. Liaw, A brief review of high entropy alloys and serration behavior and flow units, J. Iron Steel Res. Int., 23 (2016), No. 1, p. 2.

    Article  Google Scholar 

  28. [28]

    Z. Wang, J. J. Li, L. W. Ren, Y. Zhang, J. W. Qiao, and B. C. Wang, Serration behavior in Zr-Cu-Al glass forming systems, J. Iron Steel Res. Int., 23 (2016), No. 1, p. 42.

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Yong Zhang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, Dy., Zhang, Sl., Liao, Wb. et al. Superelasticity of Cu–Ni–Al shape-memory fibers prepared by melt extraction technique. Int J Miner Metall Mater 23, 928–933 (2016).

Download citation


  • copper nickel aluminum alloys
  • shape memory effect
  • melt extraction method
  • superelasticity