Skip to main content
Log in

Fabrication of nanoporous silver by de-alloying Cu-Zr-Ag amorphous alloys

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

Nanoporous silver (NPS) with a ligament size ranging from 15 to 40 nm was fabricated by de-alloying (Cu50Zr50)100-x Ag x (x = 10at%, 20at%, 30at%, and 40at%) amorphous ribbons in a mixed aqueous solution of hydrofluoric (HF) acid and nitric acid under free corrosion conditions. Nanoporous silver ligaments and pore sizes were able to be fine-tuned through tailoring the chemical composition, corrosion conditions, and de-alloying time. The ligament size increases with an increase in Ag content and de-alloying time, but decreases with an increase in HF concentration. This phenomenon may be attributed to the dissolution of Zr/Cu and the diffusion, aggregation, nucleation, and recrystallization of Ag, leading to an oriented attachment of adjacent nanocrystals as revealed by TEM analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Xu, X. Xu, J. Su, and Y. Ding, Research on unsupported nanoporous gold catalyst for CO oxidation, J. Catal., 252(2007), p. 243.

    Article  Google Scholar 

  2. E. Detsi, M. S. Sellès, P. R. Onck, and Jeff Th. M. De Hosson, Nanoporous silver as electrochemical actuator, Scripta Mater., 69(2013), p. 195.

    Article  Google Scholar 

  3. S. H. Joo, S. J. Choi, I. Oh, J. Kwak, Z. Liu, O. Terasaki, and R. Ryoo, Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles, Nature, 412(2001), p. 169.

    Article  Google Scholar 

  4. X. Ke, Z. Li, L. Gan, J. Zhao, G. Cui, W. Kellogg, D. Matera, D. Higgins, and G. Wu, Three-dimensional nanoporous Au films as high-efficiency enzyme-free electrochemical sensors, Electrochim. Acta, 170(2015), p. 337.

    Article  Google Scholar 

  5. Z. Zeng, H. Zhou, X. Long, E. Guo, and X. Wang, Electrodeposition of hierarchical manganese oxide on metal nanoparticles decorated nanoporous gold with enhanced supercapacitor performance, J. Alloys Compd., 632(2015), p. 376.

    Article  Google Scholar 

  6. G. S. Attard, P. N. Bartlett, N. R. B. Coleman, J. M. Elliott, J. R. Owen, and J. H. Wang, Mesoporous platinum films from lyotropic liquid crystalline phases, Science, 278(1997), No. 5339, p. 838.

    Article  Google Scholar 

  7. Z. Qi, C. Zhao, X. Wang, J. Lin, W. Shao, Z. Zhang, and X. Bian, Formation and characterization of monolithic nanoporous copper by chemical dealloying of Al-Cu alloys, J. Phys. Chem. C, 113(2009), No. 16, p. 6694.

    Article  Google Scholar 

  8. J. Li, H. Jiang, N. Yu, C. Xu, and H. Geng, Fabrication and characterization of bulk nanoporous copper by dealloying Al–Cu alloy slices, Corros. Sci., 90(2015), p. 216.

    Article  Google Scholar 

  9. W. Liu, L. Chen, J. Yan, N. Li, S. Shi, and S. Zhang, Dealloying solution dependence of fabrication, microstructure and porosity of hierarchical structured nanoporous copper ribbons, Corros. Sci., 94(2015), p. 114.

    Article  Google Scholar 

  10. M. Kim, W. J. Ha, J. W. Anh, H. S. Kim, S. W. Park, and D. Y. Lee, Fabrication of nanoporous gold thin films on silicon substrate by multilayer deposition of Au and Ag, J. Alloys Compd., 484(2009), p. 28.

    Article  Google Scholar 

  11. M. Hakamada and M. Mabuchi, Fabrication of nanoporous palladium by dealloying and its thermal coarsening, J. Alloys Compd., 479(2009), p. 326.

    Article  Google Scholar 

  12. H. J. Qiu, L. Peng, X. Li, H. T. Xu, and Y. Wang, Using corrosion to fabricate various nanoporous metal structures, Corros. Sci., 92(2015), p. 16.

    Article  Google Scholar 

  13. G. Li, X. Song, Z. Sun, S. Yang, B. Ding, S. Yang, Z. Yang, and F. Wang, Nanoporous Ag prepared from the melt-spun Cu-Ag alloys, Solid State Sci., 13(2011), p. 1379.

    Article  Google Scholar 

  14. C. Zhang, X. Wang, J. Sun, T. Kou, and Z. Zhang, Synthesis and antibacterial properties of magnetically recyclable nanoporous silver/Fe3O4 nanocomposites through one-step dealloying, CrystEngComm, 15(2013), p. 3965.

    Article  Google Scholar 

  15. T. T. Song, Y. L. Gao, Z. H. Zhang, and Q. J. Zhai, Microstructure and phase evolution during the dealloying of bi-phase Al-Ag alloy, Corros. Sci., 68(2013), p. 256.

    Article  Google Scholar 

  16. X. Sun, L. Lin, Z. Li, Z. Zhang, and J. Feng, Novel Ag?Cu substrates for surface-enhanced Raman scattering, Mater. Lett., 63(2009), p. 2306.

    Article  Google Scholar 

  17. R. Li, X. J. Liu, H. Wang, Y. Wu, X. M. Chu, and Z. P. Lu, Nanoporous silver with tunable pore characteristics and superior surface enhanced Raman scattering, Corros. Sci., 84(2014), p. 159.

    Article  Google Scholar 

  18. C. Shi, M. Cheng, Z. Qu, and X. Bao, Investigation on the catalytic roles of silver species in the selective catalytic reduction of NOx with methane, Appl. Catal. B, 51(2004), p. 171.

    Article  Google Scholar 

  19. J. Erlebacher, M. J. Aziz, A. Karma, N. Dimitrov, and K. Sieradzki, Evolution of nanoporosity in dealloying, Nature, 410(2001), p. 450.

    Article  Google Scholar 

  20. Y. Ding, Y. J. Kim, and J. Erlebacher, Nanoporous gold leaf: “ancient technology”/advanced material, Adv. Mater., 16(2004), No. 21, p. 1897.

    Article  Google Scholar 

  21. S. S. Wang, Y. L. Wang, Y. D. Wu, T. Wang, and X. D. Hui, High plastic Zr–Cu–Fe–Al–Nb bulk metallic glasses for biomedical applications, Int. J. Miner. Metall. Mater., 22(2015), No. 6, p. 648.

    Article  Google Scholar 

  22. Y. F. Zhao, J. Zhu, L. Chang, J. G. Song, X. H. Chen, and X. D. Hui, Influence of Cu content on the mechanical properties and corrosion resistance of Mg-Zn-Ca bulk metallic glasses, Int. J. Miner. Metall. Mater., 21(2014), No. 5, p. 487.

    Article  Google Scholar 

  23. X. Luo, R. Li, Z. Liu, L. Huang, M. Shi, T. Xu, and T. Zhang, Three-dimensional nanoporous copper with high surface area by dealloying Mg–Cu–Y metallic glasses, Mater. Lett., 76(2012), p. 96.

    Article  Google Scholar 

  24. H. Abe, K. Sato, H. Nishikawa, T. Takemoto, M. Fukuhara, and A. Inoue, Dealloying of Cu–Zr–Ti bulk metallic glass in hydrofluoric acid solution, Mater. Trans., 50(2009), No. 6, p. 1255.

    Article  Google Scholar 

  25. M. Zhang, A. M. J. Junior, S. J. Pang, T. Zhang, and A. R. Yavari, Fabrication of nanoporous silver with open pores, Scripta Mater., 100(2015), p. 21.

    Article  Google Scholar 

  26. S. Parida, D. Kramer, C. A. Volkert, H. Rösner, J. Erlebacher, and J. Weissmüller, Volume change during the formation of nanoporous gold by dealloying, Phys. Rev. Lett., 97(2006), No. 3, art. No. 035504.

    Google Scholar 

  27. J. Erlebacher, An atomistic description of dealloying porosity evolution, the critical potential, and rate-limiting behavior, J. Electrochem. Soc., 151(2004), No. 10, p. C614.

    Article  Google Scholar 

  28. D. Barsuk, M. Zhang, N. T. Panagiotopoulos, A. M. Jorge, K. Georgarakis, and A. R. Yavari, Fabrication of nanoporous copper surface by leaching of chill-zone Cu–Zr–Hf alloys, Scripta Mater., 104(2015), p. 64.

    Article  Google Scholar 

  29. W. J. Tseng, P. Y. Shen, and S. Y. Chen, Defect generation of rutile-type SnO2 nanocondensates: imperfect oriented attachment and phase transformation, J. Solid State Chem., 179(2006), p. 1237.

    Article  Google Scholar 

  30. F. Scaglione, F. Celegato, P. Rizzi, and L. Battezzati, A comparison of de-alloying crystalline and amorphous multicomponent Au alloys, Intermetallics, 66(2015), p. 82.

    Article  Google Scholar 

  31. R. L. Penn and J. F. Banfield, Imperfect oriented attachment: dislocation generation in defect-free nanocrystals, Science, 281(1998), No. 5379, p. 969.

    Article  Google Scholar 

  32. D. S. Li, M. H. Nielsen, J. R. I. Lee, C. Frandsen, J. F. Banfield, and J. J. D. Yoreo, Direction-specific interactions control crystal growth by oriented attachment, Science, 336(2012), No. 6084, p. 1014.

    Article  Google Scholar 

  33. Q. Zhang, S. J. Liu, and S. H. Yu, Recent advances in oriented attachment growth and synthesis of functional materials: concept, evidence, mechanism, and future, J. Mater. Chem., 19(2009), p. 191.

    Article  Google Scholar 

  34. M. H. Tsai, S. Y. Chen, and P. Shen, Imperfect oriented attachment: accretion and defect generation of nanosize rutile condensates, Nano Lett., 4(2004), No. 7, p. 1197.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Xiao, Sg. & Zhang, T. Fabrication of nanoporous silver by de-alloying Cu-Zr-Ag amorphous alloys. Int J Miner Metall Mater 23, 835–843 (2016). https://doi.org/10.1007/s12613-016-1298-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-016-1298-9

Keywords

Navigation