Skip to main content
Log in

Effects of different friction stir welding conditions on the microstructure and mechanical properties of copper plates

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

Friction stir welding is a new and innovative welding method used to fuse materials. In this welding method, the heat generated by friction and plastic flow causes significant changes in the microstructure of the material, which leads to local changes in the mechanical properties of the weld. In this study, the effects of various welding parameters such as the rotational and traverse speeds of the tool on the microstructural and mechanical properties of copper plates were investigated; additionally, Charpy tests were performed on copper plates for the first time. Also, the effect of the number of welding passes on the aforementioned properties has not been investigated in previous studies. The results indicated that better welds with superior properties are produced when less heat is transferred to the workpiece during the welding process. It was also found that although the properties of the stir zone improved with an increasing number of weld passes, the properties of its weakest zone, the heat-affected zone, deteriorated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Lombard, D. G. Hattingh, A. Steuwer, and M. N. James, Effect of process parameters on the residual stresses in AA5083-H321 friction stir welds, Mater. Sci. Eng. A, 501(2009), p. 119.

    Article  Google Scholar 

  2. W. Woo, H. Choo, D. W. Brown, Z. Feng, and P. K. Liaw, Angular distortion and through-thickness residual stress distribution in the friction-stir processed 6061-T6 aluminum alloy, Mater. Sci. Eng. A, 437(2006), p. 64.

    Article  Google Scholar 

  3. A. Steuwer, M. J. Peel, and P. J. Withers, Dissimilar friction stir welds in AA5083–AA6082: The effect of process parameters on residual stress, Mater. Sci. Eng. A, 441(2006), p. 187.

    Article  Google Scholar 

  4. H. L. Qin, H. Zhang, D. T. Sun, and Q. Y. Zhuang, Corrosion behavior of friction-stir-welding joints of 2A14-T6 aluminum alloy, Int. J. Miner. Metall. Mater., 22(2015), No. 6, p. 627.

    Article  Google Scholar 

  5. D. Wang, J. Shen, and L. Z. Wang, Effects of the types of overlap on the mechanical properties of FSSW welded AZ series magnesium alloy joints, Int. J. Miner. Metall. Mater., 19(2012), No. 3, p. 231.

    Article  Google Scholar 

  6. Y. F. Sun and H. Fujii, The effect of SiC particles on the microstructure and mechanical properties of friction stir welded pure copper joints, Mater. Sci. Eng. A, 528(2011), p. 5470.

    Article  Google Scholar 

  7. A. Bagheri, T. Azdast, and A. Doniavi, An experimental study on mechanical properties of friction stir welded ABS sheets, Mater. Des., 43(2013), p. 402.

    Article  Google Scholar 

  8. Y. F. Sun and H. Fujii, Investigation of the welding parameter dependent microstructure and mechanical properties of friction stir welded pure copper, Mater. Sci. Eng. A, 527(2010), p. 6879.

    Article  Google Scholar 

  9. K. Surekha and A. Els-Botes, Development of high strength, high conductivity copper by friction stir processing, Mater. Des., 32(2011), p. 911.

  10. H. Khodaverdizadeh, A. Mahmoudi, A. Heidarzadeh, and E. Nazari, Effect of friction stir welding (FSW) parameters on strain hardening behavior of pure copper joints, Mater. Des., 35(2012), p. 330.

    Article  Google Scholar 

  11. P. Shi, Q. Wang, Y. Xu, and W. Luo, Corrosion behavior of bulk nanocrystalline copper in ammonia solution, Mater. Lett., 65(2011), p. 857.

    Article  Google Scholar 

  12. X. Zhang, S. O. Pehkonen, N. Kocherginsky, and G. A. Ellis, Copper corrosion in mildly alkaline water with the disinfectant monochloramine, Corros. Sci., 44(2002), p. 2507.

    Article  Google Scholar 

  13. J. J. Shim and J. G. Kim, Copper corrosion in potable water distribution systems: influence of copper products on the corrosion behavior, Mater. Lett., 58(2004), p. 2002.

    Article  Google Scholar 

  14. N. Boulay and M. Edwards, Role of temperature, chlorine, and organic matter in copper corrosion by-product release in soft water, Water Res., 35(2001), p. 683.

    Article  Google Scholar 

  15. S. O. Pehkonen, A. Palit, and X. Zhang, Effect of Specific water quality parameters on copper corrosion, Corrosion, 58(2002), p. 156.

    Article  Google Scholar 

  16. L. E. A. Berlouis, D. A. Mamman, and I. G. Azpuru, The electrochemical behaviour of copper in alkaline solutions containing fluoride, studied by in situ ellipsometry, Surf. Sci., 408(1998), p. 173.

    Article  Google Scholar 

  17. A. M. Alfantazi, T. M. Ahmed, and D. Tromans, Corrosion behavior of copper alloys in chloride media, Mater. Des., 30(2009), p. 2425.

    Article  Google Scholar 

  18. W. B. Lee and S. B. Jung, The joint properties of copper by friction stir welding, Mater. Lett., 58(2004), p. 1041.

    Article  Google Scholar 

  19. J. J. Shen, H. J. Liu, and F. Cui, Effect of welding speed on microstructure and mechanical properties of friction stir welded copper, Mater. Des., 31(2010), p. 3937.

    Article  Google Scholar 

  20. G. M. Xie, Z. Y. Ma, and L. Geng, Development of a fine-grained microstructure and the properties of a nugget zone in friction stir welded pure copper, Scripta Mater., 57(2007), p. 73.

    Article  Google Scholar 

  21. H. Khodaverdizadeh, A. Heidarzadeh, and T. Saeid, Effect of tool pin profile on microstructure and mechanical properties of friction stir welded pure copper joints, Mater. Des., 45(2013), p. 265.

    Article  Google Scholar 

  22. N. Xu, R. Ueji, Y. Morisada, and H. Fujii, Modification of mechanical properties of friction stir welded Cu joint by additional liquid CO2 cooling, Mater. Des., 56(2014), p. 20.

    Article  Google Scholar 

  23. A. K. Lakshminarayanan, V. Balasubramanian, and M. Salahuddin, Microstructure, tensile and impact toughness properties of friction stir welded mild steel, J. Iron Steel Res. Int., 17(2010), p. 68.

    Article  Google Scholar 

  24. R. S. Mishra and Z. Y. Ma, Friction stir welding and processing, Mater. Sci. Eng. R, 50(2005), p. 1.

    Article  Google Scholar 

  25. A. Alavi Nia, H. Omidvar, and S. H. Nourbakhsh, Effects of an overlapping multi-pass friction stir process and rapid cooling on the mechanical properties and microstructure of AZ31 magnesium alloy, Mater. Des., 58(2014), p. 298.

    Article  Google Scholar 

  26. Y. Zhao, Q. Wang, H. Chen, and K. Yan, Microstructure and mechanical properties of spray formed 7055 aluminum alloy by underwater friction stir welding, Mater. Des., 56(2014), p. 725.

    Article  Google Scholar 

  27. L. G. Vigh and I. Okura, Fatigue behaviour of friction stir welded aluminium bridge deck segment, Mater. Des., 44(2013), p. 119.

    Article  Google Scholar 

  28. R. Nandan, T. DebRoy, and H. K. D. H. Bhadeshia, Recent advances in friction-stir welding: process, weldment structure and properties, Prog. Mater. Sci., 53(2008), p. 980.

    Article  Google Scholar 

  29. A. S. Franchim, F. F. Fernandez, and D. N. Travessa, Microstructural aspects and mechanical properties of friction stir welded AA2024-T3 aluminium alloy sheet, Mater. Des., 32(2011), p. 4684.

    Article  Google Scholar 

  30. Y. H. Yau, A. Hussain, R. K. Lalwani, H. K. Chan, and N. Hakimi, Temperature distribution study during the friction stir welding process of Al2024-T3 aluminum alloy, Int. J. Miner. Metall. Mater., 20(2013), No. 8, p. 779.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Alavi Nia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nia, A.A., Shirazi, A. Effects of different friction stir welding conditions on the microstructure and mechanical properties of copper plates. Int J Miner Metall Mater 23, 799–809 (2016). https://doi.org/10.1007/s12613-016-1294-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-016-1294-0

Keywords

Navigation