Skip to main content
Log in

Phosphorus partitioning and recovery of low-phosphorus iron-rich compounds through physical separation of Linz-Donawitz slag

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

The Linz-Donawitz (LD) steelmaking process produces LD slag at a rate of about 125 kg/t. After metallic scrap recovery, the non-metallic LD slag is rejected because its physical/chemical properties are unsuitable for recycling. X-ray diffraction (XRD) studies have indicated that non-metallic LD slag contains a substantial quantity of mineral phases such as di- and tricalcium silicates. The availability of these mineral phases indicates that LD slag can be recycled by iron (Fe)-ore sintering. However, the presence of 1.2wt% phosphorus (P) in the slag renders the material unsuitable for sintering operations. Electron probe microscopic analysis (EPMA) studies indicated concentration of phosphorus in dicalcium silicate phase as calcium phosphate. The Fe-bearing phases (i.e., wustite and dicalcium ferrite) showed comparatively lower concentrations of P compared with other phases in the slag. Attempts were made to lower the P content of LD slag by adopting various beneficiation techniques. Dry high-intensity magnetic separation and jigging were performed on as-received samples with particle sizes of 6 and 3 mm. Spiral separation was conducted using samples ground to sizes of less than 1 and 0.5 mm. Among these studies, grinding to 0.5 mm followed by spiral concentration demonstrated the best results, yielding a concentrate with about 0.75wt% P and 45wt% Fe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Z. Yildirim and M. Prezzi, Chemical, mineralogical, and morphological properties of steel slag, Adv. Civ. Eng., 2011(2011), Art. No. 463638.

    Google Scholar 

  2. X. R. Wu, G. M. Yang, L. S. Li, H. H. Lü, Z. J. Wu, and X. M. Shen, Wet magnetic separation of phosphorus containing phase from modified BOF slag, Ironmaking Steelmaking, 41(2014), p. 335.

    Article  Google Scholar 

  3. B. Das, S. Prakash, P. S. R. Reddy, and V. N. Misra, An overview of utilization of slag and sludge from steel industries, Resour. Conserv. Recycl., 50(2007), p. 40.

    Article  Google Scholar 

  4. N. Menad, N. Kanari, and M. Save, Recovery of high grade iron compounds from LD slag by enhanced magnetic separation techniques, Int. J. Miner. Process., 126(2014), p. 1.

    Article  Google Scholar 

  5. S. Radosavljevic, D. Milic, and M. Gavrilovski, Mineral processing of a converter slag and its use in iron ore sintering, Magn. Electr. Sep., 7(1996), No. 4, p. 201.

    Article  Google Scholar 

  6. J. Geiseler, Use of steelworks slag in Europe, Waste Manage., 16(1996), No. 1-3, p. 59.

    Article  Google Scholar 

  7. V. Ghai and W. H. Noseworthy, Resource recovery programs at Lake Erie Steel, Iron Steel Eng., 1998, 75(5), p. 24.

    Google Scholar 

  8. L. S. Ökvist, D. Q. Cang, Y. B. Zong, and H. Bai, The effect of BOF slag and BF flue dust on coal combustion efficiency, ISIJ Int., 44(2004), No. 9, p. 1501.

    Article  Google Scholar 

  9. R. Panda, R. N. Karand, and C. R. Panda, Dephosphorization of LD slag by Penicillium citrinum, The Ecoscan, III(2013), Spec. Iss., p. 247.

  10. P. Chaurand, J. Rose, V. Briois, L. Olivi, J. Hazemann, O. Proux, J. Domas, and J. Bottero, Environmental impacts of steel slag reused in road construction: a crystallographic and molecular (XANES) approach, J. Hazard. Mater., 139(2007), No. 3, p. 537.

    Article  Google Scholar 

  11. Y. Topkaya, N. Sevinç, and A. Günaydin, Slag treatment at Kardemir integrated iron and steel works, Int. J. Miner. Process., 74(2004), No. 1-4, p. 31.

    Article  Google Scholar 

  12. H. Nashiwa, T. Mizuno, J. Ohi, and K. Katohgi, Effective use of returned LD slagand dolomite and operation with sub lance system, Ironmaking Steelmaking, 5(1978), p. 95.

    Google Scholar 

  13. W. B. Dai, Y. Li, D. Q. Cang, Y. Y. Zhou, and Y. Fan, Effects of Sintering atmosphere on the physical and mechanical properties of modified BOF slag glass, Int. J. Miner. Metall. Mater., 21(2014), No. 5, p. 494.

    Article  Google Scholar 

  14. K. K. Sharma, S. Swaroop, and D. S. Thakur, Recycling of LD slag through sinter route on direct charging in blast furnace at Bhilai Steel Plant, [in] Proceedings of National Seminar on Pollution Control in Steel Industries, Ranchi, 1993, p. 72.

  15. K. Morita, M. X. Guo, N. Oka, and N. Sano, Resurrection of the iron and phosphorus resource in steel-making slag, J. Mater. Cycles Waste Manage., 4(2002), p. 93.

    Google Scholar 

  16. S. M. Jung and Y. J. Do, Reduction behaviour of BOF slag by carbon in iron, Steel Res. Int., 77(2006), p. 312.

    Google Scholar 

  17. S. H. Huang, Y. Q. Wu, X. S. Liu, Z. R. Xu, and X. H. Lv, Experimentalstudy on gasification dephosphorization of converter slag with reduction by silicon, Iron Steel, 43(2008), No. 2, p. 31.

    Google Scholar 

  18. H. Ono, A. Inagaki, T. Masui, H. Narita, T. Mitsuo, S. Nosaka, and S. Gohda, Removal of phosphorus from LD converter slag by floating of dicalcium silicate during solidification, Tetsu-to-Hagane, 66(1980), No. 9, p. 1317.

    Google Scholar 

  19. K. Yokoyama, H. Kubo, K. Mori, H. Okada, S. Takeuchi, and T. Nagasaka, Separation and recovery of phosphorus from steelmaking slags with the aid of a strong magnetic field, ISIJ Int., 47(2007), No. 10, p. 1541.

    Article  Google Scholar 

  20. H. Kubo, K. M. Yokoyama, and T. Nagasaka, Magnetic separation of phosphorus enriched phase from multiphase dephosphorization slag, ISIJ Int., 50(2010), No. 1, p. 59.

    Article  Google Scholar 

  21. F. J. Doucet, Effective CO2-specific sequestration capacity of steel slags and variability in their behaviour in view of industrial mineral carbonation, Miner. Eng., 23(2010), No. 3, p. 262.

    Article  Google Scholar 

  22. A. S. Reddy, R. K. Pradhan, and S. Chandra, Utilization of basic oxygen furnace (BOF) slag in the production of a hydraulic cement binder, Int. J. Miner. Process., 79(2006), p. 98.

    Article  Google Scholar 

  23. E. F. Wu, S. Pignolet-Brandom, and I. Iwasaki, Liberation analysis of slow cooled steel making slags: implications for phosphorus removal, [in] Proceedings of the 1st International Conference on Processing Materials for Properties, Honolulu, 1993, p. 153.

    Google Scholar 

  24. D. Y. Wang, M. F. Jiang, C. J. Liu, Y. Min, Y. Y. Cui, J. Liu, and Y. C. Zhang, Enrichment of Fe-containing phases and recovery of iron and its oxides by magnetic separation from BOF slags, Steel Res. Int., 83(2012), No. 2, p. 189.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dilip Makhija.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makhija, D., Rath, R.K., Chakravarty, K. et al. Phosphorus partitioning and recovery of low-phosphorus iron-rich compounds through physical separation of Linz-Donawitz slag. Int J Miner Metall Mater 23, 751–759 (2016). https://doi.org/10.1007/s12613-016-1289-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-016-1289-x

Keywords

Navigation