Skip to main content
Log in

Kinetic approach to the study of froth flotation applied to a lepidolite ore

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

The number of published studies related to the optimization of lithium extraction from low-grade ores has increased as the demand for lithium has grown. However, no study related to the kinetics of the concentration stage of lithium-containing minerals by froth flotation has yet been reported. To establish a factorial design of batch flotation experiments, we conducted a set of kinetic tests to determine the most selective alternative collector, define a range of pulp pH values, and estimate a near-optimum flotation time. Both collectors (Aeromine 3000C and Armeen 12D) provided the required flotation selectivity, although this selectivity was lost in the case of pulp pH values outside the range between 2 and 4. Cumulative mineral recovery curves were used to adjust a classical kinetic model that was modified with a non-negative parameter representing a delay time. The computation of the near-optimum flotation time as the maximizer of a separation efficiency (SE) function must be performed with caution. We instead propose to define the near-optimum flotation time as the time interval required to achieve 95%–99% of the maximum value of the SE function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Hernáinz and M. Calero, Froth flotation: kinetic models based on chemical analogy, Chem. Eng. Process., 40(2001), p. 269.

    Article  Google Scholar 

  2. J. L. R. Bahena, A. L. Valdivieso, E. V. Manlapig, and J. P. Franzidis, Optimization of flotation circuits by modelling and simulations, [in] Proceedings of 2006 China-Mexico Workshop on Minerals Particle Technology, San Luíz Patosi, 2006.

    Google Scholar 

  3. T. T. Hien-Dinh, V. T. Luong, R. Gieré, and T. Tran, Extraction of lithium from lepidolite via iron sulphide roasting and water leaching, Hydrometallurgy, 153(2015), p. 154.

    Article  Google Scholar 

  4. Z. W. Zhao, X. F. Si, X. H. Liu, L. H. He, and X. X. Liang, Li extraction from high Mg/Li ratio brine with LiFePO4/FePO4 as electrode materials, Hydrometallurgy, 133(2013), p. 75.

    Article  Google Scholar 

  5. P. Meshram, B. D. Pandey, and T. R. Mankhand, Extraction of lithium from primary and secondary sources by pre-treatment, leaching and separation: A comprehensive review, Hydrometallurgy, 150(2014), p. 192.

    Article  Google Scholar 

  6. I. Kunasz, Lithium, [in] Industrial and Mineral Rocks, 7th Ed., Society of Mining, Metallurgy, and Exploration, Inc., Littleton, 2006, p. 599.

    Google Scholar 

  7. M. M. A. Amarante, J. A. Noronha, A. M. Botelho de Sousa, and M. R. Machado Leite, Processamento tecnológico dos minérios de lítio: Alguns casos de estudo em Portugal, [in] Valorização de Pegmatitos Litiníferos, DGEG/LNEG/ADI/ CYTED, Lisboa, 2011, p. 43.

    Google Scholar 

  8. A. Moura and J. L. Velho, Recursos Geológicos de Portugal, Palimage, Coimbra, 2011.

    Google Scholar 

  9. J. M. F. Ramos, Aplitopegmatitos com mineralizações de metais raros de Seixo Amarelo-Gonçalo. O recurso Geológico, [in] Ciências Geológicas: Ensino, Investigação e sua História, Associação Portuguesa de Geólogos, Lisboa, 2010, p. 121.

    Google Scholar 

  10. A. Lima, R. Vieira, T. Martins, and F. Noronha, As fontes de lítio em Portugal, [in] Portugal Mineral, 3rd Ed., Associação Nacional da Indústria Extractiva e Transformadora - ANIET, Porto, 2011, p. 60.

    Google Scholar 

  11. S. Kelebek and B. Nanthakumar, Characterization of stockpile oxidation of pentlandite and pyrrhotite through kinetic analysis of their flotation, Int. J. Miner. Process., 84(2007), No. 1-4, p. 69.

    Article  Google Scholar 

  12. A. J. Lynch, N. W. Johnson, E. V. Manlaping, and C. G. Thome, Mineral and Coal Flotation Circuits: Their Simulation and Control, Elsevier Science Ltd, New York, 1981.

    Google Scholar 

  13. X. M. Yuan, B. I. Palsson, and K. S. E. Forssberg, Statistical interpretation of flotation kinetics for a complex sulphide ore, Miner. Eng., 9(1996), No. 4, p. 429.

    Article  Google Scholar 

  14. R. R. Klimpel, Selection of Chemical Reagents for Flotation, 2nd Ed., Society of Mining Engineers, Littleton, 1980.

    Google Scholar 

  15. D. F. Kelsall, Application of probability in the assessment of flotation systems, Trans. Inst. Min. Metall., 70(1961), No. 4, p. 191.

    Google Scholar 

  16. A. Jowett, Resolution of flotation recovery curves by a differential plot method, Trans. Inst. Min. Metall., 85(1974), p. C263.

    Google Scholar 

  17. M. Polat and S. Chandler, First-order flotation kinetics models and methods for estimation of the true distribution of flotation rate constants, Int. J. Miner. Process., 58(2000), p. 145.

    Article  Google Scholar 

  18. A. L. Mular and R. B. Bhappu, Mineral Processing Plant Design, 2nd Ed., Society of Mining Engineers (SME) of The American Institute of Mining, Metallurgical and Petroleum Engineers Inc., New York, 1980.

    Google Scholar 

  19. Cytec Industries Inc., Mining Chemicals Handbook, Cytec Industries Inc., New Jersey, 2002.

  20. A. P. Chaves, L. S. L. Filho, and P. F. A. Braga, Flotação, [in] Tratamento de Minérios, 5th Ed., Centro de Tecnologia Mineral-CETEM, Rio de Janeiro, 2010, p. 465.

    Google Scholar 

  21. T. N. Wills and B. A. Munn, Will’s Mineral Processing Technology, 7th Ed., Elsevier Science & Technology Book, Oxford, 2006.

    Google Scholar 

  22. F. Concha and E. R. Almendra, Settling velocities of particulate systems: 1. Settling velocities of individual spherical particles, Int. J. Miner. Process., 5(1979), No. 4, p. 349.

    Article  Google Scholar 

  23. F. Concha and E. R. Almendra, Settling velocities of particulate systems: 2. Settling velocities of suspensions of spherical particles, Int. J. Miner. Process., 6(1979), No. 1, p. 31.

    Article  Google Scholar 

  24. S. M. Bulatovic, Handbook of Flotation Reagents: Chemistry, Theory and Practice, Vol. 3, Elsevier, Amsterdam, Oxford, 2015.

    Google Scholar 

  25. G. E. Agar, The optimization of flotation circuit design from laboratory rate data, [in] XVth International Mineral Processing Congress, Vol. 2, Cannes, 1985, p. 100.

    Google Scholar 

  26. R. Samková, Recovering lithium mica from the waste after mining Sn-W ores through the use of flotation, GeoSci. Eng., LV(2009), No. 1, p. 33.

  27. Y. L. Liu and J. Liu, The flotation process of lepidolite in Jiangxi Province in China, Adv. Mater. Res., 1033-1034(2014), p. 1309.

    Article  Google Scholar 

  28. C. G. A. Nogueira, Extracção de Lítio de Recursos Nacionais, Technical Report, LNETI, Lisboa, 1991.

    Google Scholar 

  29. S. M. Bulatovic, Handbook of Flotation Reagents: Chemistry, Theory and Practice, Vol. 1, Elsevier Science, Amsterdam, 2007.

    Google Scholar 

  30. E. G. Kelly and D. J. Spottiswood, Introduction to Mineral Processing, John Wiley & Sons, New York, 1982.

    Google Scholar 

  31. D. W. Fuerstenau and S. Raghavan, Some aspects of the thermodynamics of flotation, [in] Flotation, A. M. Gaudin Memorial and M. C. Fuerstenau, eds., AIME, New York, 1976.

    Google Scholar 

  32. S. R. Ramachandra, Surface of Chemistry of Froth Flotation, 2nd Ed., Springer Science + Business Media, New York, 2004.

    Google Scholar 

  33. T. G. Kennard and A. I. Rambo, Occurrence of rubidium, gallium and thallium in lepidolite from Pala, California, Am. Mineral., 18(1933), No. 10, p. 454.

    Google Scholar 

  34. W. C. Butterman and R. G. Reese, Mineral Commodity Profiles: Rubidium, Open-File Report, 03-045, U. S. Geological Survey, 2003.

    Google Scholar 

  35. Royal Society of Chemistry. Chemistry in its Element: Rubidium. [2015-05-25]_http://wwwrscorg/chemistryworld/podcast/interactive_periodic_table_transcripts/rubidiumasp.

  36. S. F. Singer and S. S. Singer, Industrial Ceramics, Springer Science Business Media, Netherlands, 1963.

    Book  Google Scholar 

  37. V. T. Luong, D. J. Kang, J. W. An, M. J. Kim, and T. Tran, Factors affecting the extraction of lithium from lepidolite, Hydrometallurgy, 134-135(2013), p. 54.

    Article  Google Scholar 

  38. V. T. Luong, D. J. Kang, D. W. An, D. A. Dao, M. J. Kim, and T. Tran, Iron sulphate roasting for extraction of lithium from lepidolite, Hydrometallurgy, 141(2014), p. 8.

    Article  Google Scholar 

  39. Q. X. Yan, X. H. Li, Z. X. Wang, J. X. Wang, H. J. Guo, Q. Y. Hu, W. J. Peng, and X. F. Wu, Extraction of lithium from lepidolite using chlorination roasting-water leaching process, Tran. Nonferrous Met. Soc. China, 22(2012), No. 7, p. 1753.

    Article  Google Scholar 

  40. Q. X. Yan, X. H. Li, Z. X. Wang, X. F. Wu, H. J. Guo, Q. Y. Hu, W. J. Peng, and J. X. Wang, Extraction of valuable metals from lepidolite, Hydrometallurgy, 117-118(2012), p. 116.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathália Vieceli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vieceli, N., Durão, F.O., Guimarães, C. et al. Kinetic approach to the study of froth flotation applied to a lepidolite ore. Int J Miner Metall Mater 23, 731–742 (2016). https://doi.org/10.1007/s12613-016-1287-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-016-1287-z

Keywords

Navigation