Skip to main content
Log in

Dissolution behavior of Caldag lateritic nickel ore subjected to a sequential organic acid leaching method

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

The dissolution behavior of Caldag lateritic nickel ore subjected to a sequential organic acid leaching method was investigated. The effects of the type of organic acid, acid concentration, leaching time, and leaching temperature on the lateritic nickel ore were examined. Organic acids were used individually prior to sequential leaching. Citric acid was more effective than the other two acids for the selective leaching of nickel and cobalt. An increase in the citric acid concentration negligibly affected the dissolution of the metals, whereas temperature exhibited a strong beneficial effect. Oxalic acid was determined to be the most appropriate organic acid for the second leaching step. After 8 h (4 h + 4 h) of leaching with organic acids (0.5 M citric + 0.5 M oxalic) in sequence at 90°C, 89.63% Ni, 82.89% Co, and 69.63% Fe were leached from the lateritic nickel ore. A sequential citric + oxalic acid leaching method could represent a viable alternative for the dissolution of metals from lateritic nickel ore.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Zhao, J.M. Gao, Y. Yue, B. Peng, Z.Q. Que, M. Guo, and M. Zhang, Extraction and separation of nickel and cobalt from saprolite laterite ore by microwave-assisted hydrothermal leaching and chemical deposition, Int. J. Miner. Metall. Mater., 20(2013), No. 7, p. 612.

    Article  Google Scholar 

  2. P.G. Tzeferis, Leaching of a low grade hematitic laterite ore using fungi and biologically produced acid metabolites, Int. J. Miner. Process., 42(1994), No. 3–4, p. 267.

    Google Scholar 

  3. M. Valix, F. Usai, and R. Malik, Fungal bio-leaching of low grade laterite ores, Miner. Eng., 14(2001), No. 2, p. 197.

    Article  Google Scholar 

  4. M. Valix, F. Usai, and R. Malik, The electro-sorption properties of nickel on laterite gangue leached with an organic chelating acid, Miner. Eng., 14(2001), No. 2, p. 205.

    Article  Google Scholar 

  5. O. Coto, F. Galizia, I. Hernández, J. Marrero, and E. Donati, Cobalt and nickel recoveries from laterite tailings by organic and inorganic bio-acids, Hydrometallurgy, 94(2008), No. 1–4, p. 18.

    Google Scholar 

  6. S. Mohapatra, S. Bohidar, N. Pradhan, R.N. Kar, and L.B. Sukla, Microbial extraction of nickel from Sukinda chromite overburden by Acidithiobacillus ferrooxidans and Aspergillus strains, Hydrometallurgy, 85(2007), No. 1, p. 1.

    Article  Google Scholar 

  7. S.K. Behara, P.P. Panda, S. Singh, N. Pradhan, L.B. Sukla, and B.K. Mishra, Study on reaction mechanism of bioleaching of nickel and cobalt from lateritic chromite overburdens, Int. Biodeterior. Biodegrad., 65(2011), No. 7, p. 1035.

    Article  Google Scholar 

  8. S. Biswas, R. Dey, S. Mukherjee, and P.C. Banerjee, Bioleaching of nickel and cobalt from lateritic chromite overburden using the culture filtrate of Aspergillus niger, Appl. Biochem. Biotechnol., 170(2013), No. 7, p. 1547.

    Article  Google Scholar 

  9. D.E. Rawlings, The molecular genetics of Thiobacillus ferroxidans and other mesophilic, acidophilic, chemolithotrophic, iron- or sulphur-oxidizing bacteria, Hydrometallurgy, 59(2001), No. 2–3, p. 187.

    Google Scholar 

  10. J.A. Brierley, A perspective on developments in biohydrometallurgy, Hydrometallurgy, 94(2008), No. 1–4, p. 2.

    Google Scholar 

  11. C.L. Brierley, Biohydrometallurgical prospects, Hydrometallurgy, 104(2010), No. 3–4, p. 324.

    Google Scholar 

  12. G.S. Simate and S. Ndlovu, Bacterial leaching of nickel laterites using chemolithotrophic microorganisms: identifying influential factors using statistical design of experiments, Int. J. Miner. Process., 88(2008), No. 1–2, p. 31.

    Google Scholar 

  13. F. Veglió, B. Passariello, M. Barbaro, P. Plescia, and A.M. Marabini, Drum leaching tests in the iron removal from quartz using oxalic acid and sulphuric acids, Int. J. Miner. Process., 54(1998), No. 3, p. 183.

    Google Scholar 

  14. D. Panias, M. Taxiarchou, I. Paspaliaris, and K. Kontopoulos, Mechanisms of dissolution of iron oxides in aqueous oxalic acid solutions, Hydrometallurgy, 42(1996), No. 2, p. 257.

    Article  Google Scholar 

  15. P.G. Tzeferis and S. Agatzini-Leonardou, Leaching of nickel and iron from Greek non-sulphide nickeliferous ores by organic acids, Hydrometallurgy, 36(1994), No. 3, p. 345.

    Article  Google Scholar 

  16. G.H. Li, M.J. Rao, Q. Li, Z.W. Peng, and T. Jiang, Extraction of cobalt from laterite ore by citric acid in presence of ammonium bifluoride, Trans. Nonferrous Met. Soc. China, 20(2010), No. 8, p. 1517.

    Article  Google Scholar 

  17. S. Sahu, N.C. Kavuri, and M. Kundu, Dissolution kinetics of nickel laterite ore using different secondary metabolic acids, Braz. J. Chem. Eng., 28(2011), No. 2, p. 251.

    Article  Google Scholar 

  18. S. Biswas, S. Chakraborty, M.G. Chaudhuri, P.C. Banerjee, S. Mukherjee, and R. Dey, Optimization of process parameters and dissolution kinetics of nickel and cobalt from lateritic chromite overburden using organic acids, J. Chem. Technol. Biotechnol., 89(2014), No. 10, p. 1491.

    Article  Google Scholar 

  19. S. Kursunoglu and M. Kaya, Recovery of manganese from spent batteries using guar meal as a reducing agent in a sulphuric acid medium, Ind. Eng. Chem. Res., 52(2013), No. 50, p. 18076.

    Article  Google Scholar 

  20. A. Oxley, N. Sirvanci, and S. Purkiss, Çaldag nickel laterite atmospheric heap leach project, Assoc. Metall. Eng. Serbia, 13(2007), p. 5.

    Google Scholar 

  21. M.A.R. Önal and Y.A. Topkaya, Pressure acid leaching of Çaldag lateritic nickel ore: an alternative to heap leaching, Hydrometallurgy, 142(2014), p. 98.

    Article  Google Scholar 

  22. K.A.K. Alibhai, A.W.L. Dudeney, D.J. Leak, S. Agatzini, and P. Tzeferis, Bioleaching and bio precipitation of nickel and iron from laterites, FEMS Microbiol. Rev., 11(1993), p. 87.

    Article  Google Scholar 

  23. G. Senanayake and G.K. Das, A comparative study of leaching kinetics of limonitic laterite and synthetic iron oxides in sulphuric acid containing sulphur dioxide, Hydrometallurgy, 72(2004), No. 1–2, p. 59.

    Google Scholar 

  24. I. Girgin, A. Obut, and A. Üçyildiz, Dissolution behaviour of a Turkish lateritic nickel ore, Miner. Eng., 24(2011), No. 7, p. 603.

    Article  Google Scholar 

  25. C.K. Thubakgale, R.K.K. Mbaya, and K. Kabongo, A study of atmospheric acid leaching of a South African nickel laterite, Miner. Eng., 54(2013), p. 79.

    Article  Google Scholar 

  26. E. Büyükakinci and Y.A. Topkaya, Extraction of nickel from lateritic ores at atmospheric pressure with agitation leaching, Hydrometallurgy, 97(2009), No. 1–2, p. 33.

    Google Scholar 

  27. T. Agacayak and V. Zedef, Dissolution kinetics of a lateritic nickel ore in sulphuric acid medium, Acta Montanistica. Slovaca, 17(2012), p. 33.

    Google Scholar 

  28. F. Arslan, K.T. Perek, and G. Onal, Acidic leaching of Turkish lateritic nickel ore, [in] F. Kongoli and R.G. Reddy eds., Sohn International Symposium on Advanced Processing of Metals and Materials, Vol. 3, The Minerals, Metals & Materials Society (TMS), San Diego, 2006, p. 339.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sait Kursunoglu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kursunoglu, S., Kaya, M. Dissolution behavior of Caldag lateritic nickel ore subjected to a sequential organic acid leaching method. Int J Miner Metall Mater 22, 1131–1140 (2015). https://doi.org/10.1007/s12613-015-1177-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-015-1177-9

Keywords

Navigation