Skip to main content
Log in

Highly efficient anode catalyst with a Ni@PdPt core–shell nanostructure for methanol electrooxidation in alkaline media

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

To enhance the electrocatalytic activity of anode catalysts used in alkaline-media direct methanol fuel cells (DMFCs), a Ni@PdPt electrocatalyst was successfully prepared using a three-phase-transfer method. The Ni@PdPt electrocatalyst was characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and high-resolution TEM (HRTEM) techniques. The experimental results indicate that the average particle size of the core–shell-structured Ni@PdPt electrocatalyst is approximately 5.6 nm. The Ni@PdPt electrocatalyst exhibits a catalytic activity 3.36 times greater than that of PdPt alloys for methanol oxidation in alkaline media. The developed Ni@PdPt electrocatalyst offers a promising alternative as a highly electrocatalytically active anode catalyst for alkaline DMFCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Feng, J.H. Yang, H. Liu, F. Ye, and J. Yang, Selective electrocatalysts toward a prototype of the membraneless direct methanol fuel cell, Sci. Rep., 4(2014), article No. 03813.

  2. N. Kakati, J. Maiti, S.H. Lee, S.H. Jee, B. Viswanathan, and Y.S. Yoon, Anode catalysts for direct methanol fuel cells in acidic media: do we have any alternative for Pt or Pt–Ru, Chem. Rev., 114(2014), No. 24, p. 12397.

    Article  Google Scholar 

  3. Y. Gu, C.T. Liu, Y.B. Li, X.L. Sui, K. Wang, and Z.B. Wang, Ce0.8Sn0.2O2-d–C composite as a co-catalytic support for Pt catalysts toward methanol electrooxidation, J. Power Sources, 265(2014), p. 335.

  4. Y.L. Luo, Z.X. Liang, and S.J. Liao, Recent development of anode electrocatalysts for direct methanol fuel cells, Chin. J. Catal., 31(2012), No. 2, p. 141.

    Google Scholar 

  5. M.Y. Jing, L.H. Jiang, B.L. Yi, and G.Q. Sun, Comparative study of methanol adsorption and electro-oxidation on carbon-supported platinum in acidic and alkaline electrolytes, J. Electroanal. Chem., 688(2013), p. 172.

    Article  Google Scholar 

  6. A. Maksic, Z. Rakocevic, M. Smiljanic, M. Nenadovic, and S. Strbac, Methanol oxidation on Pd/Pt(poly) in alkaline solution, J. Power Sources, 273(2015), p. 724.

    Article  Google Scholar 

  7. C.C. Yang, S.S. Chiu, S.C. Kuo, and T.H. Liou, Fabrication of anion-exchange composite membranes for alkaline direct methanol fuel cells, J. Power Sources, 199(2012), p. 37.

    Article  Google Scholar 

  8. C. Wang, D.V.D. Vliet, K.L. More, N.J. Zaluzec, S. Peng, S.H. Sun, H. Daimon, G.F. Wang, J. Greeley, J. Pearson, A.P. Paulikas, G. Karapetrov, D. Strmcnik, N.M. Markovic, and V.R. Stamenkovic, Multimetallic Au/FePt3 nanoparticles as highly durable electrocatalyst, Nano Lett., 11(2011), No. 3, p. 919.

    Article  Google Scholar 

  9. V. Mazumder, M.F. Chi, K.L. More, and S.H. Sun, Core/shell Pd/FePt nanoparticles as an active and durable catalyst for the oxygen reduction reaction, J. Am. Chem. Soc., 132(2010), No. 23, p. 7848.

    Article  Google Scholar 

  10. R.Y. Wang, C. Wang, W.B. Cai, and Y. Ding, Ultralow-platinum-loading high-performance nanoporous electrocatalysts with nanoengineered surface structures, Adv. Mater., 22(2010), No. 16, p. 1845.

    Article  Google Scholar 

  11. L. Han, H. Liu, P.L. Cui, Z.J. Peng, S.J. Zhang, and J. Yang, Alloy Cu3Pt nanoframes through the structure evolution in Cu–Pt nanoparticles with a core-shell construction, Sci. Rep., 4(2014), article No. 06414.

  12. X.S. Wang, H. Wang, Z.Q. Lei, Z. Zhang, and R.F. Wang, The performance of carbon-supported platinum-decorated nickel electrocatalyst for ethanol oxidation, Chin. J. Catal., 32(2011), No. 9, p. 1519.

    Google Scholar 

  13. Q. Zhang, Z.Q. Yao, R. Zhou, Y.K. Du, and P. Yang, Fabrication of Ag/Au/Pt composite catalysts and their electrocatalytic oxidation for formic acid, Acta Chim. Sin., 70(2012), No. 20, p. 2149.

    Article  Google Scholar 

  14. S. Zhang, Y. Shao, G. Yin, and Y. Lin, Electrostatic self-assembly of a Pt-around-Au nanocomposite with high activity towards formic acid oxidation, Angew. Chem. Int. Ed., 49(2010), No. 12, p. 2211.

    Article  Google Scholar 

  15. H. Liu, F. Ye, Q.F. Yao, H.B. Cao, J.P. Xie, J.Y. Lee, and J. Yang, Stellated Ag–Pt bimetallic nanoparticles: An effective platform for catalytic activity tuning, Sci. Rep., 4(2014), article No. 03969.

  16. G. Wang, T. Takeguchi, E.N. Muhamad, T. Yamanaka, and W. Ueda, Investigation of grain boundary formation in PtRu/C catalyst obtained in a polyol process with post-treatment, Int. J. Hydrogen Energy, 36(2011), No. 5, p. 3322.

    Article  Google Scholar 

  17. X.Y. Liu, G.R. Xu, Y. Chen, T.H. Lu, Y.W. Tan, and W. Xing, A strategy for fabricating porous PdNi@Pt core–shell nanostructures and their enhanced activity and durability for the methanol electrooxidation, Sci. Rep., 5(2015), article No. 07619.

  18. J.D. Cai, Y.Z. Zeng, and Y.L. Guo, Copper@palladium-copper core–shell nanospheres as a highly effective electrocatalyst for ethanol electro-oxidation in alkaline media, J. Power Sources, 270(2014), p. 257.

    Article  Google Scholar 

  19. Q. Tan, C.Y. Du, Y.G. Sun, L. Du, G.P. Yin, and Y.Z. Gao, Nickel-doped ceria nanoparticles for promoting catalytic activity of Pt/C for ethanol electrooxidation, J. Power Sources, 263(2014), p. 310.

  20. X.B. Zhang, J.M. Yan, S. Han, H. Shioyama, and Q. Xu, Magnetically recyclable Fe@Pt core–shell nanoparticles and their use as electrocatalysts for ammonia borane oxidation: The role of crystallinity of the core, J. Am. Chem. Soc., 131(2009), No. 8, p. 2778.

    Article  Google Scholar 

  21. X.T. Zhang, H. Wang, J.L. Key, V. Linkov, S. Ji, X.L. Wang, Z.Q. Lei, and R.F. Wang, Strain effect of core–shell Co@Pt/C nanoparticle catalyst with enhanced electrocatalytic activity for methanol oxidation, J. Electrochem. Soc., 159(2012), No. 3, p. B270.

    Article  Google Scholar 

  22. L. Gan, M. Heggen, S. Rudi, and P. Strasser, Core–shell compositional fine structures of dealloyed PtxNi1-x nanoparticles and their impact on oxygen reduction catalysis, Nano Lett., 12(2012), No. 10, p. 5423.

    Article  Google Scholar 

  23. J.H. Yang, X.J. Chen, X.F. Yang, and J.Y. Ying, Stabilization and compressive strain effect of AuCu core on Pt shell for oxygen reduction reaction, Energ Environ. Sci., 5(2012), p. 8976.

  24. L.X. Ding, G.R. Li, Z.L. Wang, Z.Q. Liu, H. Liu, and Y.X. Tong, Porous Ni@Pt core–shell nanotube array electrocatalyst with high activity and stability for methanol oxidation, Chemistry, 18(2012), No. 27, p. 8386.

    Article  Google Scholar 

  25. Y.J. Kang, J. Snyder, M.F. Chi, D.G. Li, K.L. More, N.M. Markovic, and V.R. Stamenkovic, Multimetallic core/interlayer/ shell nanostructures as advanced electrocatalysts, Nano Lett., 14(2014), No. 11, p. 6361.

    Article  Google Scholar 

  26. Y.C. Zhao, X.L. Yang, J.N. Tian, F.Y. Wang, and L. Zhan, Methanol electro-oxidation on Ni@Pd core–shell nanoparticles supported on multi-walled carbon nanotubes in alkaline media, Int. Hydrogen Energy, 35(2010), No. 8, p. 3249.

    Article  Google Scholar 

  27. M.M. Zhang, Z.X. Yan, and J.M. Xie, Core/shell Ni@Pd nanoparticles supported on MWCNTs at improved electrocatalytic performance for alcohol oxidation in alkaline media, Electrochim. Acta, 77(2012), p. 237.

    Article  Google Scholar 

  28. H. Wang, X.T. Zhang, R.F. Wang, S. Ji, W. Wang, Q.Z. Wang, and Z.Q. Lei, Amorphous CoSn alloys decorated by Pt as high efficiency electrocatalysts for ethanol oxidation, J. Power Sources, 196(2011), No. 19, p. 8000.

    Article  Google Scholar 

  29. F.F. Ren, H.W. Wang, C.Y. Zhai, M.S. Zhu, R.R. Yue, Y.K. Du, P. Yang, J.K. Xu, and W.S. Lu, Clean method for the synthesis of reduced graphene oxide-supported PtPd alloys with high electrocatalytic activity for ethanol oxidation in alkaline medium, ACS Appl. Mater. Interfaces, 6(2014), p. 3607.

    Article  Google Scholar 

  30. X.Z. Fu, Y. Liang, S.P. Chen, J.D. Lin, and D.W. Liao, Pt-rich shell coated Ni nanoparticles as catalysts for methanol electro-oxidation in alkaline media, Catal. Commun., 10(2009), No. 14, p. 1893.

    Article  Google Scholar 

  31. N. Tsud, V. Johánek, I. Stará, K. Veltruská, and V. Matolín, XPS, ISS and TPD study of Pd–Sn interactions on Pd-SnOx systems, Thin Solid Films, 391(2001), No. 2, p. 204.

    Article  Google Scholar 

  32. J.B. Xu, T.S. Zhao, Y.S. Li, and W.W. Yang, Synthesis and characterization of the Au-modified Pd cathode catalyst for alkaline direct ethanol fuel cells, Int. J. Hydrogen Energy, 35(2010), No. 18, p. 9693.

    Article  Google Scholar 

  33. R.F. Nie, J.H. Wang, L.N. Wang, Y. Qin, P. Chen, and Z.Y. Hou, platinum supported on reduced graphene oxide as a catalyst for hydrogenation of nitroarenes, Carbon, 50(2012), No. 2, p. 586.

    Article  Google Scholar 

  34. B.P. Vinayan and S. Ramaprabhu, Platinum–TM (TM = Fe, Co) alloy nanoparticles dispersed nitrogen doped (reduced graphene oxide-multiwalled carbon nanotube) hybrid structure cathode electrocatalysts for high performance PEMFC applications, Nanoscale, 5(2013), p. 5109.

    Article  Google Scholar 

  35. Y.M. Liang, H.M. Zhang, H.X. Zhong, X.B. Zhu, Z.Q. Tian, D.Y. Xu, and B.L. Yi, Preparation and characterization of carbon-supported PtRuIr catalyst with excellent CO-tolerant performance for proton-exchange membrane fuel cells, J. Catal., 238(2006), No. 2, p. 468.

    Article  Google Scholar 

  36. B.Y. Xia, H.B. Wu, Y. Yan, X. Wen, and X. Wang, Ultrathin and ultralong single-crystal platinum nanowire assemblies with highly stable electrocatalytic activity, J. Am. Chem. Soc., 135(2013), No. 25, p. 9480.

    Article  Google Scholar 

  37. X.Y. Wang, J.C. Zhang, X.D. Cao, Y.S. Jiang, and H. Zhu, Synthesis and characterization of Pt–MoOx–TiO2 electrodes for direct ethanol fuel cells, Int. J. Miner. Metall. Mater., 18(2011), No. 5, p. 594.

    Article  Google Scholar 

  38. M. Itoh, M. Saito, M. Takehara, K. Motoki, J. Iwamoto, and K. Machida, Influence of supported-metal characteristics on deNOx catalytic activity over Pt/CeO2, J. Mol. Catal. A, 304(2009), No. 1-2, p. 159.

    Article  Google Scholar 

  39. Q. Tan, C.Y. Du, G.P. Yin, P.J. Zuo, X.Q. Cheng, and M. Chen, Highly efficient and stable nonplatinum anode catalyst with Au@Pd core–shell nanostructures for methanol electrooxidation, J. Catal., 295(2012), p. 217.

    Article  Google Scholar 

  40. W.T. Wei and W. Chen, “Naked” Pd nanoparticles supported on carbon nanodots as efficient anode catalysts for methanol oxidation in alkaline fuel cells, J. Power Sources, 204(2012), p. 85.

    Article  Google Scholar 

  41. Z.Y. Li, Y.J. Ling, S.P. Jiang, X.D. Shan, M.L. Lin, and C.W. Xu, Electrooxidation of methanol and ethylene glycol mixture on platinum and palladium in alkaline medium, Fuel Cells, 12(2012), No. 4, p. 677.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-tao Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Ps., Liu, Ct., Feng, B. et al. Highly efficient anode catalyst with a Ni@PdPt core–shell nanostructure for methanol electrooxidation in alkaline media. Int J Miner Metall Mater 22, 1101–1107 (2015). https://doi.org/10.1007/s12613-015-1173-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-015-1173-0

Keywords

Navigation