Skip to main content

Advertisement

Log in

Injection molding of ultra-fine Si3N4 powder for gas-pressure sintering

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

The ceramic injection molding technique was used in the gas-pressure sintering of ultra-fine Si3N4 powder. The feedstock’s flowability, debinding rate, defect evolution, and microstructural evolution during production were explored. The results show that the solid volume loading of less than 50vol% and the surfactant mass fraction of 6wt% result in a perfect flowability of feedstock; this feedstock is suitable for injection molding. When the debinding time is 8 h at 40°C, approximately 50% of the wax can be solvent debinded. Defects detected during the preparation are traced to improper injection parameters, mold design, debinding parameters, residual stress, or inhomogeneous composition distribution in the green body. The bulk density, Vickers hardness, and fracture toughness of the gas-pressure-sintered Si3N4 ceramic reach 3.2 g/cm3, 16.5 GPa, and 7.2 MPa·m1/2, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.P. Doğan and J.A. Hawk, Microstructure and abrasive wear in silicon nitride ceramics, Wear, 250(2001), No. 1-12, p. 256.

    Article  Google Scholar 

  2. M.H. Bocanegra-Bernal and B. Matovic, Mechanical properties of silicon nitride-based ceramics and its use in structural applications at high temperatures, Mater. Sci. Eng. A, 527(2010), No. 6, p. 1314.

    Article  Google Scholar 

  3. X.L. Ni, H.Q. Yin, L. Liu, S.J. Yi, and X.H. Qu, Injection molding and debinding of micro gears fabricated by micro powder injection molding, Int. J. Miner. Metall. Mater., 20(2013), No. 1, p. 82.

    Article  Google Scholar 

  4. Z.W. Xu, C.C. Jia, C.J. Kuang, and X.H. Qu, Fabrication and sintering behavior of high-nitrogen nickel-free stainless steels by metal injection molding, Int. J. Miner. Metall. Mater., 17(2010), No. 4, p. 423.

    Article  Google Scholar 

  5. S.J. Yi, H.Q. Yin, K. Chen, D.F. Khan, Q.J. Zheng, and X.H. Qu, Microstructure and properties of nano-TiN modified Ti(C,N)-based cermets fabricated by powder injection molding and die pressing, Int. J. Miner. Metall. Mater., 20(2013), No. 11, p. 1115.

    Article  Google Scholar 

  6. M.H. Bocanegra-Bernal and B. Matovic, Dense and near-net-shape fabrication of Si3N4 ceramics, Mater. Sci. Eng. A, 500(2009), No. 1-2, p. 130.

    Article  Google Scholar 

  7. V.L. Wiesner, J.P. Youngblood, and R.W. Trice, Roomtemperature injection molding of aqueous alumina-polyvinylpyrrolidone suspensions, J. Eur. Ceram. Soc., 34(2014), No. 2, p. 453.

    Article  Google Scholar 

  8. J. Hidalgo, C. Abajo, A. Jiménez-Morales, and J.M. Torralba, Effect of a binder system on the low-pressure powder injection moulding of water-soluble zircon feedstocks, J. Eur. Ceram. Soc., 33(2013), No. 15-16, p. 3185.

    Article  Google Scholar 

  9. L. Gorjan, T. Kosmač, and A. Dakskobler, Single-step wick-debinding and sintering for powder injection molding, Ceram. Int., 40(2014), No. 1, p. 887.

    Article  Google Scholar 

  10. S.M. Ani, A. Muchtar, N. Muhamad, and J.A. Ghani, Binder removal via a two-stage debinding process for ceramic injection molding parts, Ceram. Int., 40(2014), No. 2, p. 2819.

    Article  Google Scholar 

  11. D. Bleyan, P. Svoboda, and B. Hausnerov, Specific interactions of low molecular weight analogues of carnauba wax and polyethylene glycol binders of ceramic injection moulding feedstocks, Ceram. Int., 41(2015), No. 3, p. 3975.

    Article  Google Scholar 

  12. J. Hidalgo, A. Jiménez-Morales, and J.M. Torralba, Thermal stability and degradation kinetics of feedstocks for powder injection moulding: a new way to determine optimal solid loading? Polym. Degrad. Stab., 98(2013), No. 6, p. 1188.

    Article  Google Scholar 

  13. S.M. Ani, A. Muchtar, N. Muhamad, and J.A. Ghani, Fabrication of zirconia-toughened alumina parts by powder injection molding process: Optimized processing parameters, Ceram. Int., 40(2014), No. 1, p. 273.

    Article  Google Scholar 

  14. J. Lenz, R.K. Enneti, S.J. Park, and S.V. Atre, Powder injection molding process design for UAV engine components using nanoscale silicon nitride powders, Ceram. Int., 40(2014), No. 1, p. 893.

    Article  Google Scholar 

  15. R.K. Enneti, T.S. Shivashankar, S.J. Park, R.M. German, and S.V. Atre, Master debinding curves for solvent extraction of binders in powder injection molding, Powder Technol., 228(2012), p. 14.

    Article  Google Scholar 

  16. J.P. Choi, H.G. Lyu, W.S. Lee, and J.S. Lee, Investigation of the rheological behavior of 316L stainless steel micro-nano powder feedstock for micro powder injection molding, Powder Technol., 261(2014), p. 201.

    Article  Google Scholar 

  17. X.F. Yang, C. Jia, Z.P. Xie, W. Liu, and Q.C. Liu, Water- soluble binder system based on poly-methyl methacrylate and poly-ethylene glycol for injection molding of large-sized ceramic parts, Int. J. Appl. Ceram. Technol., 10(2013), No. 2, p. 339.

    Article  Google Scholar 

  18. J.L. Fan, Y. Han, T. Liu, H.C. Cheng, Y. Gao, and J.M. Tian, Influence of surfactant addition on rheological behaviors of injection-molded ultrafine 98W–1Ni–1Fe suspension, Trans. Nonferrous Met. Soc. China, 23(2013), No. 6, p. 1709.

    Article  Google Scholar 

  19. X.F. Yang, Z.P. Xie, G.W. Liu, and Y. Huang, Dynamics of water debinding in ceramic injection moulding, Adv. Appl. Ceram., 108(2009), No. 5, p. 295.

    Article  Google Scholar 

  20. T.S. Shivashankar and R.M. German, Effective length scale for predicting solvent-debinding times of components produced by powder injection molding, J. Am. Ceram. Soc., 82(1999), No. 5, p. 1146.

    Article  Google Scholar 

  21. T.S. Wei and R.M. German, Two-stage Fast Debinding of Injection Molding Powder Compacts, US Patent, Appl.5028367, 1991.

    Google Scholar 

  22. P. Dvorak, T. Barriere, and J.C. Gelin, Direct observation of mould cavity filling in ceramic injection moulding, J. Eur. Ceram. Soc., 28(2008), No. 10, p. 1923.

    Article  Google Scholar 

  23. W. Liu, X.F. Yang, Z.P. Xie, C. Jia, and L.L. Wang, Novel fabrication of injection-moulded ceramic parts with large section via partially water-debinding method, J. Eur. Ceram. Soc., 32(2012), No. 10, p. 2187.

    Article  Google Scholar 

  24. S. Krug, J.R.G. Evans, and J.H.H. ter Maat, Residual stresses and cracking in large ceramic injection mouldings subjected to different solidification schedules, J. Eur. Ceram. Soc., 20(2000), No. 14-15, p. 2535.

    Article  Google Scholar 

  25. X.F. Yang, Z.P. Xie, and Y. Huang, Influence of the compacts homogeneity on the incidence of cracks during thermal debinding in ceramic injection molding, J. Mater. Sci. Technol., 25(2009), No. 2, p. 264

    Google Scholar 

  26. S.D. Yang, R.J. Zhang, and X.H. Qu, X-ray analysis of powder- binder separation during SiC injection process in L-shaped mould, J. Eur. Ceram. Soc., 35(2015), No. 1, p. 61.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xian-feng Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Xf., Yang, Jh., Xu, Xw. et al. Injection molding of ultra-fine Si3N4 powder for gas-pressure sintering. Int J Miner Metall Mater 22, 654–659 (2015). https://doi.org/10.1007/s12613-015-1119-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-015-1119-6

Keywords

Navigation