Skip to main content

Advertisement

Log in

Hydroxyapatite/alumina nanocrystalline composite powders synthesized by sol-gel process for biomedical applications

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

Hydroxyapatite/alumina nanocrystalline composite powders needed for various biomedical applications were successfully synthesized by sol-gel process. Structural and morphological investigations of the prepared composite powders were performed using X-ray diffractometer (XRD), scanning electron microscopy (SEM), X’Pert HighScore software, and Clemex Vision image analysis software. The results show that the crystallite size of the obtained composite powders is in the range of 25 to 90 nm. SEM evaluation shows that the obtained composite powders have a porous structure, which is very useful for biomedical applications. The spherical nanoparticles in the range of 60 to 800 nm are embedded in the agglomerated clusters of the prepared composite powders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. V.P. Orlovskii and S.M. Barinov, Hydroxyapatite and hydroxyapatite-matrix ceramics: a survey, Russ. J. Inorg. Chem., 46(2001), No. 2, p. 129.

    Google Scholar 

  2. S.H. Teng, E.J. Lee, P. Wang, and H.E. Kim, Collagen/hydroxyapatite composite nanofibers by electrospinning, Mater. Lett., 62(2008), No. 17–18, p. 3055.

    Article  Google Scholar 

  3. X. Lu, Y.B. Wang, Y.R. Liu, J.X. Wang, S.X. Qu, B. Feng, and J. Weng, Preparation of HA/chitosan composite coatings on alkali treated titanium surfaces through sol-gel techniques, Mater. Lett., 61(2007), No. 18, p. 3970.

    Article  Google Scholar 

  4. Y.T. Zhao, Z. Zhang, Q.X. Dai, D.Y. Lin, and S.M. Li, Microstructure and bond strength of HA(+ZrO2+Y2O3)/Ti6Al4V composite coatings fabricated by RF magnetron sputtering, Surf. Coat. Technol., 200(2006), No. 18–19, p. 5354.

    Article  Google Scholar 

  5. V.K. Singh and B.R. Reddy, Synthesis and characterization of bioactive zirconia toughened alumina doped with HAp and fluoride compounds, Ceram. Int., 38(2012), No. 7, p. 5333.

    Article  Google Scholar 

  6. M.M. Sebdani and M.H. Fathi, Preparation and characterization of hydroxyapatite-forsterite-bioactive glass nanocomposite coatings for biomedical applications, Ceram. Int., 38(2012), No. 2, p. 1325.

    Article  Google Scholar 

  7. J. Li, B. Fartash, and L. Hermansson, Hydroxyapatite-alumina composites and bone-bonding, Biomaterials, 16(1995), No. 5, p. 417.

    Article  Google Scholar 

  8. S. Salehi and M.H. Fathi, Fabrication and characterization of sol-gel derived hydroxyapatite/zirconia composite nanopowders with various yttria contents, Ceram. Int., 36(2010), No. 5, p. 1659.

    Article  Google Scholar 

  9. J. Harle, H.W. Kim, N. Mordan, J.C. Knowles, and V. Salih, Initial responses of human osteoblasts to sol-gel modified titanium with hydroxyapatite and titania composition, Acta Biomater., 2(2006), No. 5, p. 547.

    Article  Google Scholar 

  10. J.Y. Han, Z.T. Yu, and L. Zhou, Hydroxyapatite/titania composite bioactivity coating processed by the sol-gel method, Biomed. Mater, 3(2008), No. 4, art. No. 044109.

    Google Scholar 

  11. S.M. Latifi, M.H. Fathi, and M.A. Golozar, Preparation and characterisation of bioactive hydroxyapatite-silica composite nanopowders via sol-gel method for medical applications, Adv. Appl. Ceram., 110(2011), No. 1, p. 8.

    Article  Google Scholar 

  12. E. Hatzistavrou, X. Chatzistavrou, L. Papadopoulou, N. Kantiranis, E. Kontonasaki, A.R. Boccaccini, and K.M. Paraskevopoulos, Characterisation of the bioactive behaviour of sol-gel hydroxyapatite-CaO and hydroxyapatite-CaO-bioactive glass composites, Mater. Sci. Eng. C, 30(2010), No. 3, p. 497.

    Article  Google Scholar 

  13. I.Y. Kim, A. Sugino, K. Kikuta, C. Ohtsuki, and S.B. Cho, Bioactive composites consisting of PEEK and calcium silicate powders, J. Biomater. Appl., 24(2009), No. 2, p. 105.

    Article  Google Scholar 

  14. J. Qu, X. Lu, D. Li, Y. Ding, Y. Leng, J. Weng, S. Qu, B. Feng, and F. Watari, Silver/hydroxyapatite composite coatings on porous titanium surfaces by sol-gel method, J. Biomed. Mater. Res., 97(2011), No. 1, p. 40.

    Article  Google Scholar 

  15. A. Yelten, S. Yilmaz, and F.N. Oktar, Sol-gel derived alumina-hydroxyapatite-tricalcium phosphate porous composite powders, Ceram. Int., 38(2012), No. 4, p. 2659.

    Article  Google Scholar 

  16. H. Najafi, Z.A. Nemati, and Z. Sadeghian, Inclusion of carbon nanotubes in a hydroxyapatite sol-gel matrix, Ceram. Int., 35(2009), No. 7, p. 2987.

    Article  Google Scholar 

  17. R. Ravarian, F. Moztarzadeh, M.S. Hashjin, S.M. Rabiee, P. Khoshakhlagh, and M. Tahriri, Synthesis, characterization and bioactivity investigation of bioglass/hydroxyapatite composite, Ceram. Int., 36(2010), No. 1, p. 291.

    Article  Google Scholar 

  18. M.M. Sebdani and M.H. Fathi, Novel hydroxyapatite-forsterite-bioglass nanocomposite coatings with improved mechanical properties, J. Alloys Compd., 509(2011), No. 5, p. 2273.

    Article  Google Scholar 

  19. Y.K. Jun, W.H. Kim, O.K. Kweon, and S.H. Hong, The fabrication and biochemical evaluation of alumina reinforced calcium phosphate porous implants, Biomaterials, 24(2003), No. 21, p. 3731.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Khorsand.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khorsand, S., Fathi, M.H., Salehi, S. et al. Hydroxyapatite/alumina nanocrystalline composite powders synthesized by sol-gel process for biomedical applications. Int J Miner Metall Mater 21, 1033–1036 (2014). https://doi.org/10.1007/s12613-014-1005-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-014-1005-7

Keywords

Navigation