Skip to main content
Log in

Fabrication and densification enhancement of SiC-particulate-reinforced copper matrix composites prepared via the sinter-forging process

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

The fabrication of copper (Cu) and copper matrix silicon carbide (Cu/SiCp) particulate composites via the sinter-forging process was investigated. Sintering and sinter-forging processes were performed under an inert Ar atmosphere. The influence of sinter-forging time, temperature, and compressive stress on the relative density and hardness of the prepared samples was systematically investigated and subsequently compared with that of the samples prepared by the conventional sintering process. The relative density and hardness of the composites were enhanced when they were prepared by the sinter-forging process. The relative density values of all Cu/SiCp composite samples were observed to decrease with the increase in SiC content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F.E. Kennedy, A.C. Balbahadur, and D.S. Lashmore, The friction and wear of Cu-based silicon carbide particulate metal matrix composites for brake applications, Wear, 203–204(1997), p. 715.

    Article  Google Scholar 

  2. T. Schubert, B. Trindade, T. Weibgarber, and B. Kieback, Interfacial design of Cu-based composites prepared by powder metallurgy for heat sink applications, Mater. Sci. Eng. A, 475(2008), No.1–2, p. 39.

    Article  Google Scholar 

  3. K.M. Shu and G.C. Tu, The microstructure and the thermal expansion characteristics of Cu/SiCp composites, Mater. Sci. Eng. A, 349(2003), No 1–2, p. 236.

    Article  Google Scholar 

  4. Y.Z. Zhan and G.D. Zhang, The effect of interfacial modifying on the mechanical and wear properties of SiCp/Cu composites, Mater. Lett., 57(2003), No. 29, p. 4583.

    Article  Google Scholar 

  5. G.C. Efe, I. Altinsoy, T. Yener, M. Ipek, S. Zeytin, and C. Bindal, Characterization of cemented Cu matrix composites reinforced with SiC, Vacuum, 85(2010), No. 5, p. 643.

    Article  Google Scholar 

  6. G.C. Efe, T. Yener, I. Altinsoy, M. Ipek, S. Zeytin, and C. Bindal, The effect of sintering temperature on some properties of Cu-SiC composite, J. Alloys Compd., 509(2011), No. 20, p. 6036.

    Article  Google Scholar 

  7. S.Y. Chang and S.J. Lin, Fabrication of SiCw reinforced copper matrix composite by electroless copper plating, Scripta Mater., 35(1996), No. 2, p. 225.

    Article  Google Scholar 

  8. S.F. Moustafa, W.M. Rashad, and E.E. El-Shereafy, Cu-matrix composites produced with either coated or uncoated reinforcement powders, Can. Metall. Q., 40(2001), No. 4, p. 533.

    Article  Google Scholar 

  9. K.R. Venkatachari and R. Raj, Enhancement of strength through sinter-forging, J. Am. Ceram. Soc., 70(1987), No. 7, p. 514.

    Article  Google Scholar 

  10. K.R. Venkatachari and R. Raj, Shear deformation and densification of powder compacts, J. Am. Ceram. Soc., 69(1986), p. 499.

    Article  Google Scholar 

  11. P.C. Panda, J. Lagraff, and R. Raj, Shear deformation and compaction of nickel aluminide powders at elevated temperatures, Acta Metall., 36(1988), No. 8, p. 1929.

    Article  Google Scholar 

  12. F. Wakai, S. Sakaguchi, and Y. Matsuno, Superplasticity of yttriastablized tetragonal ZrO2 polycrystals, Adv. Ceram. Mater., 1(1986), p. 259.

    Google Scholar 

  13. N. Kondo, Y. Suzuki, and T. Ohji, Superplastic Sinter-forging of silicon nitride with anisotropic microstructure formation, J. Am. Ceram. Soc., 82(1999), No. 4, p. 1067.

    Article  Google Scholar 

  14. A. Kaushal, S.M. Olhero, P. Antunes, A. Ramalho, and J.M.F. Ferreira, Structural, mechanical and dielectric properties of Ba0.6Sr0.4TiO3: the benefits of a colloidal processing approach, Mater. Res. Bull., 50(2014), p. 329.

    Article  Google Scholar 

  15. G.C. Efe, S. Zeytin, and C. Bindal, The effect of SiC particle size on the properties of Cu-SiC composites, Mater. Des., 36(2012), p. 633.

    Article  Google Scholar 

  16. M.R. Akbarpour, E. Salahi, F. Alikhani Hesari, E.Y. Yoon, H.S. Kim, and A. Simchi, Microstructural development and mechanical properties of nanostructured copper reinforced with SiC nanoparticles, Mater. Sci. Eng. A, 568(2013), p. 33.

    Article  Google Scholar 

  17. M.R. Akbarpour, E. Salahi, F. Alikhani Hesari, H.S. Kim, and A. Simchi, Effect of nanoparticle content on the microstructural and mechanical properties of nano-SiC dispersed bulk ultrafine-grained Cu matrix composites, Mater. Des., 52(2013), p. 881.

    Article  Google Scholar 

  18. S.C. Tjong and K.C. Lau, Tribological behaviour of SiC particle-reinforced copper matrix composites, Mater. Lett., 43(2000), p. 274.

    Article  Google Scholar 

  19. D.M. Owen and A.H. Chokshi, Final stage free sintering and sinter forging behavior of a yttria-stabilized tetragonal zirconia, Acta Mater., 46(1998), No. 2, p. 719.

    Article  Google Scholar 

  20. D.C. Hague and M.J. Mayo, Modelling densification during sinter-forging of yttria-partially-stabilized zirconia, Mater. Sci. Eng. A, 204(1995), p. 83.

    Article  Google Scholar 

  21. Y.J. He, A.J.A. Winnubst, H. Verweij, and A.J. Burggraaf, Improvement of mechanical properties of zirconia-toughened alumina by sinter forging, J. Mater. Sci., 29(1994), No. 22, p. 5868.

    Article  Google Scholar 

  22. D.C. Hague and M.J. Mayo, Sinter-forging of nanocrystalline zirconia: I. Experimental, J. Am. Ceram. Soc., 80(1997), No. 1, p. 149.

    Article  Google Scholar 

  23. D.C. Hague and M.J. Mayo, Sinter-forging of nanocrystalline zirconia: II. Simulation, J. Am. Ceram. Soc., 82(1999), No. 3, p. 545.

    Article  Google Scholar 

  24. L. He and E. Ma, Processing and microhardness of bulk Cu-Fe nanocomposites, Nanostruct. Mater., 7(1996), No. 3, p. 327.

    Article  Google Scholar 

  25. K.K. Gan, M.Y. Gu, and G.H. Mu, Effect of Fe on the properties of Cu/SiCp composite, J. Mater. Sci., 43(2008), No. 4, p. 1318.

    Article  Google Scholar 

  26. A.J.A. Winnubst, M.M.R. Boutz, Y.J. He, A.J. Burggraaf, and H. Verweij, Plasticity of nanocrystalline zirconia ceramics and composites, Ceram. Int., 23(1997), No. 3, p. 215.

    Article  Google Scholar 

  27. G. Skandan, Processing of nanostructured zirconia ceramics, Nanostruct. Mater., 5(1995), No. 2, p. 111.

    Article  Google Scholar 

  28. S.F. Moustafa, Z. Abdel-Hamid, and A.M. Abd-Elahi, Copper matrix SiC and Al2O3 particulate composites by powder metallurgy technique, Mater. Lett., 53(2002), No. 4–5, p. 244.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammadmehdi Shabani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shabani, M., Paydar, M.H. & Moshksar, M.M. Fabrication and densification enhancement of SiC-particulate-reinforced copper matrix composites prepared via the sinter-forging process. Int J Miner Metall Mater 21, 934–939 (2014). https://doi.org/10.1007/s12613-014-0992-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-014-0992-8

Keywords

Navigation