Effect of pH values on the extracellular polysaccharide secreted by Acidithiobacillus ferrooxidans during chalcopyrite bioleaching

  • Run-lan Yu
  • Jing Liu
  • Jian-xi Tan
  • Wei-min Zeng
  • Li-juan Shi
  • Guo-hua Gu
  • Wen-qing Qin
  • Guan-zhou Qiu
Article

Abstract

The pH value plays an important role in the bioleaching of sulphide minerals. The effect of pH values on the extracellular polysaccharide secreted by Acidithiobacillus ferrooxidans was investigated in different phases of bacterial growth during chalcopyrite bioleaching. It is found that extracellular polysaccharide secretion from the cells attached to chalcopyrite is more efficiently than that of the free cells in the bioleaching solution. Three factors, pH values, the concentration of soluble metal ions, and the bacterial growth and metabolism, affect extracellular polysaccharide secretion in the free cells, and are related to the bacterial growth phase. Extracellular polysaccharide secretion from the attached cells is mainly dependent on the pH value of the bacterial culture.

Keywords

chalcopyrite bioleaching polysaccharides acidity Acidithiobacillus ferrooxidans 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    H.R. Watling, The bioleaching of sulphide minerals with emphasis on copper sulphides: a review, Hydrometallurgy, 84(2006), No. 1–2, p. 81.CrossRefGoogle Scholar
  2. [2]
    N. Pradhan, K.C. Nathsaram, K. Srinivasa Rao, L.B. Sukla, and B.K. Mishra, Heap bioleaching of chalcopyrite: a review, Miner. Eng., 21(2008), No. 5, p. 355.CrossRefGoogle Scholar
  3. [3]
    C. Klauber, A critical review of the surface chemistry of acidic ferric sulphate dissolution of chalcopyrite with regards to hindered dissolution, Int. J. Miner. Process., 86(2008), No. 1–4, p. 1.CrossRefGoogle Scholar
  4. [4]
    J. Vilcáez, R. Yamada, and C. Inoue, Effect of pH reduction and ferric ion addition on the leaching of chalcopyrite at thermophilic temperatures, Hydrometallurgy, 96(2009), No. 1–2, p. 62.CrossRefGoogle Scholar
  5. [5]
    N. Hiroyoshi, H. Kitagawa, and M. Tsunekawa, Effect of solution composition on the optimum redox potential for chalcopyrite leaching in sulfuric acid solutions, Hydrometallurgy, 91(2008), No. 1–4, p. 144.CrossRefGoogle Scholar
  6. [6]
    Y.G. Wang, L.J. Su, L.J. Zhang, W.M. Zeng, J.Z. Wu, L.L. Wan, G.Z. Qiu, X.H. Chen, and H.B. Zhou, Bioleaching of chalcopyrite by defined mixed moderately thermophilic consortium including a marine acidophilic halotolerant bacterium, Bioresour. Technol., 121(2012), p. 348.CrossRefGoogle Scholar
  7. [7]
    J.A. Brierley, Acidophilic thermophilic archaebacteria: potential application for metals recovery, FEMS Microbiol. Lett., 75(1990), No. 2–3, p. 287.CrossRefGoogle Scholar
  8. [8]
    E. Gómez, A. Ballester, M.L. Blázquez, and F. González, Silver-catalysed bioleaching of a chalcopyrite concentrate with mixed cultures of moderately thermophilic microorganisms, Hydrometallurgy, 51(1999), No. 1, p. 37.CrossRefGoogle Scholar
  9. [9]
    W. Sand and T. Gehrke, Extracellular polymeric substances mediate bioleaching/biocorrosion via interfacial processes involving iron (III) ions and acidophilic bacteria, Res. Microbiol., 157(2006), No. 1, p. 49.CrossRefGoogle Scholar
  10. [10]
    R.L. Yu, D.L. Zhong, L. Miao, F.D. Wu, G.Z. Qiu, and G.H. Gu, Relationship and effect of redox potential, jarosites and extracellular polymeric substances in bioleaching chalcopyrite by acidithiobacillus ferrooxidans, Trans. Nonferrous Met. Soc. China, 21(2011), No. 7, p. 1634.CrossRefGoogle Scholar
  11. [11]
    C. Pogliani and E. Donati, The role of exopolymers in the bioleaching of a non-ferrous metal sulphide, J. Ind. Microbiol. Biotechnol., 22(1999), p. 88.CrossRefGoogle Scholar
  12. [12]
    T. Gehrke, R. Hallmann, and W. Sand, Importance of exopolymers from Thiobacillus ferrooxidans and Leptospirillum ferrooxidans for bioleaching. [in] Biohydrometallurgical Processing, C.A. Jerez, T. Vargas, H. Toledo, and J.V. Wiertz, eds., University of Chile, Santiago, 1(1995), p. 2.Google Scholar
  13. [13]
    T. Gehrke, J. Telegdi, D. Thierry, and W. Sand, Importance of extracellular polymeric substances from Thiobacillus ferrooxidans for bioleaching, Appl. Environ. Microbiol., 64(1998), No. 7, p. 2743.Google Scholar
  14. [14]
    K. Kinzler, T. Gehrke, J. Telegdi, and W. Sand, Bioleaching: a result of interfacial processes caused by extracellular polymeric substances (EPS), Hydrometallurgy, 71(2003), No. 1–2, p. 83.CrossRefGoogle Scholar
  15. [15]
    R.L. Yu, J. Liu, A. Chen, D.L. Zhong, Q. Li, W.Q. Qin, G.Z. Qiu, and G.H. Gu, Interaction mechanism of Cu2+, Fe3+ ions and extracellular polymeric substances during bioleaching chalcopyrite by Acidithiobacillus ferrooxidans ATCC2370, Trans. Nonferrous Met. Soc. China, 23(2013), p. 231.CrossRefGoogle Scholar
  16. [16]
    R.L. Yu, Y. Ou, J.X. Tan, F.D. Wu, J. Sun, L. Miao, and D.L. Zhong, Effect of EPS on adhesion of Acidithiobacillus ferrooxidans on chalcopyrite and pyrite mineral surfaces, Trans. Nonferrous Met. Soc. China, 21(2011), No. 2, p. 407.CrossRefGoogle Scholar
  17. [17]
    W.M. Zeng, G.Z. Qiu, H.B. Zhou, X.D. Liu, M. Chen, W.L. Chao, C.G. Zhang, and J.H. Peng, Characterization of extracellular polymeric substances extracted during the bioleaching of chalcopyrite concentrate, Hydrometallurgy, 100(2010), No. 3–4, p. 177.CrossRefGoogle Scholar
  18. [18]
    Y.D. Karkhanis, J.Y. Zeltner, J.J. Jackson, and D.J. Carlo, A new and improved microassay to determine 2-keto-3-deoxyoctonate in lipopolysaccharide of gram-negative bacteria, Anal. Biochem., 85(1978), No. 2, p. 595.CrossRefGoogle Scholar
  19. [19]
    R.L. Yu, J.X. Tan, G.L. Gu, Y.H. Hu, and G.Z. Qiu, Mechanism of bioleaching chalcopyrite by Acidithiobacillus ferrooxidans in agar-simulated extracellular polymeric substances media, J. Cent. South Univ. Technol., 17(2010), No. 1, p. 56.CrossRefGoogle Scholar

Copyright information

© University of Science and Technology Beijing and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Run-lan Yu
    • 1
    • 2
  • Jing Liu
    • 1
    • 2
  • Jian-xi Tan
    • 3
  • Wei-min Zeng
    • 1
    • 2
  • Li-juan Shi
    • 1
    • 2
  • Guo-hua Gu
    • 1
    • 2
  • Wen-qing Qin
    • 1
    • 2
  • Guan-zhou Qiu
    • 1
    • 2
  1. 1.School of Minerals Processing and BioengineeringCentral South UniversityChangshaChina
  2. 2.Key Laboratory of BiometallurgyMinistry of EducationChangshaChina
  3. 3.Hunan Entry-Exit Inspection and Quarantine BureauChangshaChina

Personalised recommendations