Skip to main content
Log in

Activator-assisted electroless deposition of copper nanostructured films

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

This paper showed simple and effective synthesis of copper nanoparticles within controlled diameter using direct electroless deposition on glass substrates, following the sensitization and activation steps. Electroless-deposited metals, such as Cu, Co, Ni, and Ag, and their alloys had many advantages in micro- and nanotechnologies. The structural, morphological, and optical properties of copper deposits were characterized using X-ray diffraction (XRD), atomic force microscopy (AFM), and UV-Vis spectroscopy. The structural data was further analyzed using the Rietveld refinement program. Structural studies reveal that the deposited copper prefers a (111) orientation. AFM studies suggest the deposited materials form compact, uniform, and nanocrystalline phases with a high tendency to self-organize. The data show that the particle size can be controlled by controlling the activator concentration. The absorption spectra of the as-deposited copper nanoparticles reveal that the plasmonic peak broadens and exhibits a blue shift with decreasing particle size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. C. Lin and C. Lee, Grain boundary diffusion of copper in tantalum nitride thin films, J. Electrochem. Soc., 146(1999), No. 9, p. 3466.

    Article  Google Scholar 

  2. A. Vaškelis, Coatings Technology Handbook, Marcel Dekker, New York, 2001, p. 213.

    Google Scholar 

  3. S. Abe, M. Ohkubo, T. Fujinami, and H. Honma, The electroless copper plating of small via holes, Trans. Inst. Met. Finish., 76(1998), p. 12.

    Google Scholar 

  4. J. P. O’Kelly, K.F. Mongey, Y. Gobil, J. Torres, P.V. Kelly, and G.M. Crean, Room temperature electroless plating copper seed layer process for damascene interlevel metal structures, Microelectron. Eng., 50(2000), p. 473.

    Article  Google Scholar 

  5. S. C. Tang and X.K. Meng, Controllable synthesis of metal particles by a direct current electrochemical approach, Sci. China, Ser. E, 52(2009), No. 9, p. 2709.

    Article  Google Scholar 

  6. B. Hafezi and M.R. Majidi, A sensitive and fast electrochemical sensor based on copper nanostructures for nitrate determination in foodstuffs and mineral waters, Anal. Methods, 5(2013), p. 3552.

    Article  Google Scholar 

  7. J. R. Hollahan and R.S. Rosler, Thin Film Processes, Academic Press, New York, 1978, p. 335.

    Book  Google Scholar 

  8. V. M. Dubin, Y. Shacham-Diamand, B. Zhao, P.K. Vasudev, and C.H. Ting, Selective and blanket electroless copper deposition for ultralarge scale integration, J. Electrochem. Soc., 144(1997), No. 3, p. 898.

    Article  Google Scholar 

  9. K. Valenzuela, S. Raghavan, P.A. Deymier, and J. Hoying, Formation of copper nanowires by electroless deposition using microtubules as templates, J. Nanosci. Nanotechnol., 8(2008), p. 1.

    Article  Google Scholar 

  10. C. L. Yan and D.F. Xue, A Modified electroless deposition route to dendritic Cu metal nanostructures, Cryst. Growth Des., 8(2008), No. 6, p. 1849.

    Article  Google Scholar 

  11. L. Yu, L. Guo, R. Preisser, and R. Akolkar, Autocatalysis during electroless copper deposition using glyoxylic acid as reducing agent, J. Electrochem. Soc., 160(2013), No. 12, p. D3004.

    Article  Google Scholar 

  12. D. Bhusari, H. Hayden, R. Tanikella, S.A.B. Allen, and P.A. Kohl, Plasma treatment and surface analysis of polyimide films for electroless copper buildup process, J. Electrochem. Soc., 152(2005), No. 10, p. F162.

    Article  Google Scholar 

  13. C. L. Lee, Y.C. Huang, and L.C. Kuo, Catalytic effect of Pd nanoparticles on electroless copper deposition, J. Solid State Electrochem., 11(2007), No. 5, p. 639.

    Article  Google Scholar 

  14. J. H. Byeon, K.Y. Yoon, Y.K. Jung, and J. Hwang, Thermophoretic deposition of palladium aerosol nanoparticles for electroless micropatterning of copper, Electrochem. Commun., 10(2008), p. 1272.

    Article  Google Scholar 

  15. M. Schlesinger and M. Paunovic, Modern Electroplating, 5th ed., John Wiley & Sons, Inc., Hoboken, New Jersey, 2010.

    Book  Google Scholar 

  16. N. Fritz, H.C. Koo, Z. Wilson, E. Uzunlar, Z.S. Wen, X.Y. Yeow, S.A.B. Allen, and P.A. Kohl, Electroless deposition of copper on organic and inorganic substrates using a Sn/Ag catalyst, J. Electrochem. Soc., 159(2012), No. 6, p. D386.

    Article  Google Scholar 

  17. R. Sard, The nucleation, growth, and structure of electroless copper deposits, J. Electrochem. Soc., 117(1970), No. 7, p. 864.

    Article  Google Scholar 

  18. P. Bindra and J.R. White, Electroless Plating: Fundamentals and Applications, William Andrew Publishing, New York, 1990, p. 289.

    Google Scholar 

  19. H. H. Hsu, C.W. Teng, S.J. Lin, and J.W. Yeh, Sn/Pd catalyzation and electroless Cu deposition on TaN diffusion barrier layers, J. Electrochem. Soc., 149(2002), No. 3, p. C143.

    Article  Google Scholar 

  20. H. H. Hsu, C.C. Hsieh, M.H. Chen, S.J. Lin, and J.W. Yeh, Displacement activation of tantalum diffusion barrier layer for electroless copper deposition, J. Electrochem. Soc., 148(2001), No. 9, p. C590.

    Article  Google Scholar 

  21. S. Y. Chang, C.J. Hsu, R.H. Fang, and S.J. Lin, Electrochemical deposition of nanoscaled palladium catalysts for 65 nm copper metallization, J. Electrochem. Soc., 150(2003), No. 9, p. C603.

    Article  Google Scholar 

  22. O. G. Palanna, Engineering Chemistry, Tata McGraw Hill Publications, New Delhi, 2009, p.191.

    Google Scholar 

  23. B. D. Cullity and S.R. Stock, Elements of X-ray Diffraction, Addison-Wesley Publishing Company, Menlo Park, California, 1978, p. 102.

    Google Scholar 

  24. C. S. Barret and T.B. Massalski, Structure of Metals, Pergamon Press, Oxford, 1980, p. 204.

    Google Scholar 

  25. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters, Springer, Berlin, 1995, p. 184.

    Book  Google Scholar 

  26. O. A. Yeshchenko, I.M. Dmitruk, A.M. Dmytruk, and A.A. Alexeenko, Influence of annealing conditions on size and optical properties of copper nanoparticles embedded in silica matrix, Mater. Sci. Eng., B, 137(2007), p. 247.

    Article  Google Scholar 

  27. M. P. Pileni, Optical properties of nanosized particles dispersed in colloidal solutions or arranged in 2D or 3D superlattices, New J. Chem., 22(1998), p. 693.

    Article  Google Scholar 

  28. N. R. Jana., Z.L. Wang, T. K. Sau, and T. Pal, Seed-mediated growth method to prepare cubic copper nanoparticles, Curr. Sci., 79(2000), No. 9, p. 1367.

    Google Scholar 

  29. D. S. Wang and M. Kerker, Enhanced Raman scattering by molecules adsorbed at the surface of colloidal spheroids, Phys. Rev. B, 24(1981), No. 4, p. 1777.

    Article  Google Scholar 

  30. M. Blosi, S. Albonetti, M. Dondi, C. Martelli, and G. Baldi, Microwave-assisted polyol synthesis of Cu nanoparticles, J. Nanopart. Res., 13(2011), p. 127.

    Article  Google Scholar 

  31. M. A. Garcia, Surface plasmons in metallic nanoparticles: fundamentals and applications, J. Phys. D, 44(2011), No. 28, p. 1.

    Article  Google Scholar 

  32. S. Link and M.A. El-Sayed, Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals, Int. Rev. Phys. Chem., 19(2000), No. 3, p. 409.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Varsha R. Mehto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mehto, V.R., Pandey, R.K. Activator-assisted electroless deposition of copper nanostructured films. Int J Miner Metall Mater 21, 196–203 (2014). https://doi.org/10.1007/s12613-014-0885-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-014-0885-x

Keywords

Navigation