Skip to main content
Log in

Fabrication and properties of foam geopolymer using circulating fluidized bed combustion fly ash

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

In recent years, circulating fluidized bed combustion fly ash (CFA) is used as a raw material for geopolymer synthesis. Hydrogen peroxide was employed as a foaming agent to prepare CFA-based foam geopolymer. The particle distribution, mineral composition, and chemical composition of CFA were examined firstly. Geopolymerization products were characterized by mechanical testing, scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray fluorescence (XRF). The CFA-based foam geopolymer was successfully fabricated with different contents of hydrogen peroxide and exhibited uncompleted alkali reaction and reasonable strength with relative low atomic ratios of Si/Al and Si/Na. Type-C CFA in this research could be recycled as an alternative source material for geopolymer production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Davidovits, Geopolymer Chemistry and Applications, Institut Géopolymère, Saint-Quentin, 2008, p. 592.

    Google Scholar 

  2. H. Xu, Geopolymerisation of Alumino-Silicate Minerals [Dissertation], The University of Melbourne, Melbourne, 2002, p. 297.

    Google Scholar 

  3. P. Sun, Fly Ash Based Inorganic Polymeric Building Material [Dissertation], Wayne State University, Detroit, 2005, p. 216.

    Google Scholar 

  4. R.E. Lyon, P.N. Balaguru, A. Foden, U. Sorathia, J. Davidovits, and M. Davidovics, Fire-resistant aluminosilicate composites, Fire Mater., 21(1997), p. 67.

    Article  Google Scholar 

  5. D.L.Y. Kong, J.G. Sanjayan, and K. Sagoe-Crentsil, Comparative performance of geopolymers made with metakaolin and fly ash after exposure to elevated temperatures, Cem. Concr. Res., 37(2007), p. 1583.

    Article  Google Scholar 

  6. H. Xu and J.S.J. van Deventer, The geopolymerisation of alumino-silicate minerals, Int. J. Miner. Process., 59(2000), p.247.

    Article  Google Scholar 

  7. H. Xu and J.S.J. van Deventer, Geopolymerisation of multiple minerals, Miner. Eng., 15(2002), p. 1131.

    Article  Google Scholar 

  8. H. Xu and J.S.J. van Deventer, The effect of alkali metals on the formation of geopolymeric gels from alkali-feldspars, Colloids Surf. A, 216(2003), p. 27.

    Article  Google Scholar 

  9. P. Duxson, G.C. Lukey, and S.J. van Deventer, Thermal conductivity of metakaolin geopolymers used as a first approximation for determining gel interconnectivity, Ind. Eng. Chem. Res., 45(2006), No. 23, p. 7781.

    Article  Google Scholar 

  10. M. Hu, X. Zhu, and F. Long, Alkali-activated fly ash-based geopolymers with zeolite or bentonite as additives. Cem. Concr. Compos., 31(2009), p. 762.

    Article  Google Scholar 

  11. P. Chindaprasirt, C. Jaturapitakkul, W. Chalee, and U. Rattanasak, Comparative study on the characteristics of fly ash and bottom ash geopolymers, Waste Manage., 29(2009), p.539.

    Article  Google Scholar 

  12. J.E. Oh, P.J.M. Monteiro, S.S. Jun, S. Choi, and S.M. Clark, The evolution of strength and crystalline phases for alkaliactivated ground blast furnace slag and fly ash-based geopolymers, Cem. Concr. Res., 40(2010), p. 189.

    Article  Google Scholar 

  13. P. Sukmak, S. Horpibulsuk, and S.L. Shen, Strength development in clay-fly ash geopolymer, Constr. Build. Mater., 40(2013), p. 566.

    Article  Google Scholar 

  14. W.D.A. Rickard, R. Williams, J. Temuujin, and A.V. Riessen, Assessing the suitability of three Australian fly ashes as an aluminosilicate source for geopolymers in high temperature applications, Mater. Sci. Eng. A, 528(2011), p. 3390.

    Article  Google Scholar 

  15. Y.L. Zhao, J.W. Ye, X.B. Lu, M.G. Liu, Y. Lin, W.T. Gong, and G.L. Ning, Preparation of sintered foam materials by alkaliactivated coal fly ash, J. Hazard. Mater., 174(2010), p.108.

    Article  Google Scholar 

  16. W.D.A. Rickard, L. Vickers, and A. van Riessen, Performance of fibre reinforced, low density metakaolin geopolymers under simulated fire conditions, Appl. Clay Sci., 73(2013), p.71.

    Article  Google Scholar 

  17. E. Prud’homme, P. Michaud, E. Joussein, J.M. Clacens, and S. Rossignol, Role of alkaline cations and water content on geomaterial foams: monitoring during formation, J. Non Cryst. Solids, 357(2011), p. 1270.

    Article  Google Scholar 

  18. J.L. Bell and W.M. Kriven, Preparation of ceramic foams from metakaolin-based geopolymer gels, Ceram. Eng. Sci. Proc., 29(2009), No. 10, p. 97.

    Google Scholar 

  19. E. Álvarez-Ayuso, X. Querol, F. Plana, A. Alastuey, N. Moreno, M. Izquierdo, O. Font, T. Moreno, S. Diez, E. Vazquez, and M. Barra, Environmental, physical and structural characterisation of geopolymer matrixes synthesised from coal (co-)combustion fly ashes, J. Hazard. Mater., 154(2008), p.175.

    Article  Google Scholar 

  20. T. Bakharev, Geopolymeric materials prepared using Class F fly ash and elevated temperature curing, Cem. Concr. Res., 35(2005), p. 1224.

    Article  Google Scholar 

  21. M. Criado, A. Fernández-Jiménez, A.G. de la Torre, M.A.G. Aranda, and A. Palomo, An XRD study of the effect of the SiO2/Na2O ratio on the alkali activation of fly ash, Cem. Concr. Res., 37(2007), p. 671.

    Article  Google Scholar 

  22. Y. Fang and O. Kayali, The fate of water in fly ash-based geopolymers, Constr. Build. Mater., 39(2013), p. 89.

    Article  Google Scholar 

  23. Q. Li, H. Xu, F.H. Li, P.M. Li, L.F. Shen, and J.P. Zhai, Synthesis of geopolymer composites from blends of CFBC fly and bottom ashes, Fuel, 97(2012), p. 366.

    Article  Google Scholar 

  24. P. Chindaprasirt and U. Rattanasak, Utilization of blended fluidized bed combustion (FBC) ash and pulverized coal combustion (PCC) fly ash in geopolymer, Waste Manage., 30(2010), p. 667.

    Article  Google Scholar 

  25. J.L. Provis, P. Duxson, J.S.J. van Deventer, and G.C. Lukey, The role of mathematical modelling and gel chemistry in advancing geopolymer technology, Chem. Eng. Res. Des., 83(2005), No. 7, p. 853.

    Article  Google Scholar 

  26. J.G.S. van Jaarsveld, J.S.J. van Deventer, and G.C. Lukey, The effect of composition and temperature on the properties of fly ash- and kaolinite-based geopolymers, Chem. Eng. J., 89(2002), p. 63.

    Article  Google Scholar 

  27. K. Komnitsas and D. Zaharaki, Geopolymerisation: a review and prospects for the minerals industry, Miner. Eng., 20(2007), p. 1261.

    Article  Google Scholar 

  28. J.L. Provis and J.S.J. van Deventer, Direct measurement of the kinetics of geopolymerisation by in-situ energy dispersive X-ray diffractometry, J. Mater. Sci., 42(2007), No. 9, p. 2974.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ze Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Z., Shao, Nn., Wang, Dm. et al. Fabrication and properties of foam geopolymer using circulating fluidized bed combustion fly ash. Int J Miner Metall Mater 21, 89–94 (2014). https://doi.org/10.1007/s12613-014-0870-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-014-0870-4

Keywords

Navigation