Fabrication and properties of foam geopolymer using circulating fluidized bed combustion fly ash

  • Ze Liu
  • Ning-ning Shao
  • Dong-min Wang
  • Jun-feng Qin
  • Tian-yong Huang
  • Wei Song
  • Mu-xi Lin
  • Jin-sha Yuan
  • Zhen Wang
Article

Abstract

In recent years, circulating fluidized bed combustion fly ash (CFA) is used as a raw material for geopolymer synthesis. Hydrogen peroxide was employed as a foaming agent to prepare CFA-based foam geopolymer. The particle distribution, mineral composition, and chemical composition of CFA were examined firstly. Geopolymerization products were characterized by mechanical testing, scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray fluorescence (XRF). The CFA-based foam geopolymer was successfully fabricated with different contents of hydrogen peroxide and exhibited uncompleted alkali reaction and reasonable strength with relative low atomic ratios of Si/Al and Si/Na. Type-C CFA in this research could be recycled as an alternative source material for geopolymer production.

Keywords

fly ash geopolymers foamed products microstructure hydrogen peroxide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. Davidovits, Geopolymer Chemistry and Applications, Institut Géopolymère, Saint-Quentin, 2008, p. 592.Google Scholar
  2. [2]
    H. Xu, Geopolymerisation of Alumino-Silicate Minerals [Dissertation], The University of Melbourne, Melbourne, 2002, p. 297.Google Scholar
  3. [3]
    P. Sun, Fly Ash Based Inorganic Polymeric Building Material [Dissertation], Wayne State University, Detroit, 2005, p. 216.Google Scholar
  4. [4]
    R.E. Lyon, P.N. Balaguru, A. Foden, U. Sorathia, J. Davidovits, and M. Davidovics, Fire-resistant aluminosilicate composites, Fire Mater., 21(1997), p. 67.CrossRefGoogle Scholar
  5. [5]
    D.L.Y. Kong, J.G. Sanjayan, and K. Sagoe-Crentsil, Comparative performance of geopolymers made with metakaolin and fly ash after exposure to elevated temperatures, Cem. Concr. Res., 37(2007), p. 1583.CrossRefGoogle Scholar
  6. [6]
    H. Xu and J.S.J. van Deventer, The geopolymerisation of alumino-silicate minerals, Int. J. Miner. Process., 59(2000), p.247.CrossRefGoogle Scholar
  7. [7]
    H. Xu and J.S.J. van Deventer, Geopolymerisation of multiple minerals, Miner. Eng., 15(2002), p. 1131.CrossRefGoogle Scholar
  8. [8]
    H. Xu and J.S.J. van Deventer, The effect of alkali metals on the formation of geopolymeric gels from alkali-feldspars, Colloids Surf. A, 216(2003), p. 27.CrossRefGoogle Scholar
  9. [9]
    P. Duxson, G.C. Lukey, and S.J. van Deventer, Thermal conductivity of metakaolin geopolymers used as a first approximation for determining gel interconnectivity, Ind. Eng. Chem. Res., 45(2006), No. 23, p. 7781.CrossRefGoogle Scholar
  10. [10]
    M. Hu, X. Zhu, and F. Long, Alkali-activated fly ash-based geopolymers with zeolite or bentonite as additives. Cem. Concr. Compos., 31(2009), p. 762.CrossRefGoogle Scholar
  11. [11]
    P. Chindaprasirt, C. Jaturapitakkul, W. Chalee, and U. Rattanasak, Comparative study on the characteristics of fly ash and bottom ash geopolymers, Waste Manage., 29(2009), p.539.CrossRefGoogle Scholar
  12. [12]
    J.E. Oh, P.J.M. Monteiro, S.S. Jun, S. Choi, and S.M. Clark, The evolution of strength and crystalline phases for alkaliactivated ground blast furnace slag and fly ash-based geopolymers, Cem. Concr. Res., 40(2010), p. 189.CrossRefGoogle Scholar
  13. [13]
    P. Sukmak, S. Horpibulsuk, and S.L. Shen, Strength development in clay-fly ash geopolymer, Constr. Build. Mater., 40(2013), p. 566.CrossRefGoogle Scholar
  14. [14]
    W.D.A. Rickard, R. Williams, J. Temuujin, and A.V. Riessen, Assessing the suitability of three Australian fly ashes as an aluminosilicate source for geopolymers in high temperature applications, Mater. Sci. Eng. A, 528(2011), p. 3390.CrossRefGoogle Scholar
  15. [15]
    Y.L. Zhao, J.W. Ye, X.B. Lu, M.G. Liu, Y. Lin, W.T. Gong, and G.L. Ning, Preparation of sintered foam materials by alkaliactivated coal fly ash, J. Hazard. Mater., 174(2010), p.108.CrossRefGoogle Scholar
  16. [16]
    W.D.A. Rickard, L. Vickers, and A. van Riessen, Performance of fibre reinforced, low density metakaolin geopolymers under simulated fire conditions, Appl. Clay Sci., 73(2013), p.71.CrossRefGoogle Scholar
  17. [17]
    E. Prud’homme, P. Michaud, E. Joussein, J.M. Clacens, and S. Rossignol, Role of alkaline cations and water content on geomaterial foams: monitoring during formation, J. Non Cryst. Solids, 357(2011), p. 1270.CrossRefGoogle Scholar
  18. [18]
    J.L. Bell and W.M. Kriven, Preparation of ceramic foams from metakaolin-based geopolymer gels, Ceram. Eng. Sci. Proc., 29(2009), No. 10, p. 97.Google Scholar
  19. [19]
    E. Álvarez-Ayuso, X. Querol, F. Plana, A. Alastuey, N. Moreno, M. Izquierdo, O. Font, T. Moreno, S. Diez, E. Vazquez, and M. Barra, Environmental, physical and structural characterisation of geopolymer matrixes synthesised from coal (co-)combustion fly ashes, J. Hazard. Mater., 154(2008), p.175.CrossRefGoogle Scholar
  20. [20]
    T. Bakharev, Geopolymeric materials prepared using Class F fly ash and elevated temperature curing, Cem. Concr. Res., 35(2005), p. 1224.CrossRefGoogle Scholar
  21. [21]
    M. Criado, A. Fernández-Jiménez, A.G. de la Torre, M.A.G. Aranda, and A. Palomo, An XRD study of the effect of the SiO2/Na2O ratio on the alkali activation of fly ash, Cem. Concr. Res., 37(2007), p. 671.CrossRefGoogle Scholar
  22. [22]
    Y. Fang and O. Kayali, The fate of water in fly ash-based geopolymers, Constr. Build. Mater., 39(2013), p. 89.CrossRefGoogle Scholar
  23. [23]
    Q. Li, H. Xu, F.H. Li, P.M. Li, L.F. Shen, and J.P. Zhai, Synthesis of geopolymer composites from blends of CFBC fly and bottom ashes, Fuel, 97(2012), p. 366.CrossRefGoogle Scholar
  24. [24]
    P. Chindaprasirt and U. Rattanasak, Utilization of blended fluidized bed combustion (FBC) ash and pulverized coal combustion (PCC) fly ash in geopolymer, Waste Manage., 30(2010), p. 667.CrossRefGoogle Scholar
  25. [25]
    J.L. Provis, P. Duxson, J.S.J. van Deventer, and G.C. Lukey, The role of mathematical modelling and gel chemistry in advancing geopolymer technology, Chem. Eng. Res. Des., 83(2005), No. 7, p. 853.CrossRefGoogle Scholar
  26. [26]
    J.G.S. van Jaarsveld, J.S.J. van Deventer, and G.C. Lukey, The effect of composition and temperature on the properties of fly ash- and kaolinite-based geopolymers, Chem. Eng. J., 89(2002), p. 63.CrossRefGoogle Scholar
  27. [27]
    K. Komnitsas and D. Zaharaki, Geopolymerisation: a review and prospects for the minerals industry, Miner. Eng., 20(2007), p. 1261.CrossRefGoogle Scholar
  28. [28]
    J.L. Provis and J.S.J. van Deventer, Direct measurement of the kinetics of geopolymerisation by in-situ energy dispersive X-ray diffractometry, J. Mater. Sci., 42(2007), No. 9, p. 2974.CrossRefGoogle Scholar

Copyright information

© University of Science and Technology Beijing and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Ze Liu
    • 1
  • Ning-ning Shao
    • 1
  • Dong-min Wang
    • 1
  • Jun-feng Qin
    • 1
  • Tian-yong Huang
    • 1
  • Wei Song
    • 1
  • Mu-xi Lin
    • 1
  • Jin-sha Yuan
    • 1
  • Zhen Wang
    • 1
  1. 1.School of Chemical and Environmental EngineeringChina University of Mining & TechnologyBeijingChina

Personalised recommendations