Skip to main content
Log in

Copper foils with gradient structure in thickness direction and different roughnesses on two surfaces fabricated by double rolling

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

Copper foils with gradient structure in thickness direction and different roughnesses on two surfaces were fabricated by double rolling. The two surface morphologies of double-rolled copper foils are quite different, and the surface roughness values are 61 and 1095 nm, respectively. The roughness value of matt surface can meet the requirement for bonding the resin matrix with copper foils used for flexible printed circuit boards, thus may omit traditional roughening treatment; the microstructure of double-rolled copper foils demonstrates an obviously asymmetric gradient feature. From bright surface to matt surface in thickness direction, the average grain size first increases from 2.3 to 7.4 μm and then decreases to 3.6 μm; compared with conventional rolled copper foils, the double-rolled copper foils exhibit a remarkably increased bending fatigue life, and the increased range is about 16.2%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Castro-Rodríguez, A.I. Oliva, V. Sosa, F. Caballero-Briones, and J.L. Pena, Effect of indium tin oxide substrate roughness on the morphology, structural and optical properties of CdS thin films, Appl. Surf. Sci., 161(2000), No. 3–4, p. 340.

    Article  Google Scholar 

  2. R.L. Xin, B. Li, L. Li, and Q. Liu, Influence of texture on corrosion rate of AZ31 Mg alloy in 3.5 wt.% NaCl, Mater. Des., 32(2011), No. 8–9, p. 4548.

    Article  Google Scholar 

  3. W. Li and D.Y. Li, Influence of surface morphology on corrosion and electronic behavior, Acta Mater., 54(2006), No. 2, p. 445.

    Article  Google Scholar 

  4. S.V. Ryjlov, T. Nagao, V.G. Lifshits, and S. Hasegawa, Surface roughness and electrical resistance on Si(100)2×3-Na surface, Surf. Sci., 493(2001), No. 1–3, p. 619.

    Google Scholar 

  5. D.E. Packham, Surface energy, surface topography and adhesion, Int. J. Adhes. Adhes., 23(2003), No. 6, p. 437.

    Article  Google Scholar 

  6. X.P. Ye, M. De Bonte, J.P. Celis, and J.R. Roos, Role of overpotential on texture, morphology and ductility of electrodeposited copper foils for printed circuit board applications, J. Electrochem. Soc., 139(1992), No. 6, p. 1592.

    Article  Google Scholar 

  7. A. Ghiotti, S. Bruschi, and F. Borsetto, Tribological characteristics of high strength steel sheets under hot stamping conditions, J. Mater. Process. Technol., 211(2011), No. 11, p. 1694.

    Article  Google Scholar 

  8. G. Hong and G.N. Chen, Asymmetrical cold rolling realized on plan mill for steel sheet by laser-textured rolls, Iron Steel, 33(1988), No. 3, p. 63.

    Google Scholar 

  9. D.C. Yu and D.S. Tan, Applications of copper plating technology to electronic materials, Electroplat. Finish., 26(2007), No. 2, p. 43.

    Google Scholar 

  10. K. Lu, The future of metals, Science, 328(2010), No. 5976, p. 319.

    Article  Google Scholar 

  11. Y.M. Wang, M.W. Chen, F.H. Zhou, and E. Ma, High tensile ductility in a nanostructured metal, Nature, 419(2002), p. 912.

    Article  Google Scholar 

  12. T.H. Fang, W.L. Li, N.R. Tao, and K. Lu, Revealing extraordinary intrinsic tensile plasticity in gradient nanograined copper, Science, 331(2011), No. 6024, p. 1587.

    Article  Google Scholar 

  13. K.H. Hwang, M.R. Plichta, and J.K. Lee, Grain-sizegradient nickel alloys I: Fabrication and tensile properties, Mater. Sci. Eng. A, 101(1988), p. 183.

    Google Scholar 

  14. K.H. Hwang, M.R. Plichta, and J.K. Lee, Grain size gradient nickel alloys II: Fatigue properties, Mater. Sci. Eng. A, 114(1989), p. 61.

    Article  Google Scholar 

  15. W. Kerth, E. Amann, X. Raber, and H. Weber, Aluminium foil production, Int. Mater. Rev., 20(1975), No. 1, p. 185.

    Article  Google Scholar 

  16. H. Utsunomiya, M.P.F. Sutcliffe, H.R. Shercliff, P. Bate, and D.B. Miller, Evolution of matt surface topography in aluminium pack rolling: Part I. Model development, Int. J. Mech. Sci., 46(2004), No. 9, p. 1349.

    Article  Google Scholar 

  17. H. Utsunomiya, M.P.F. Sutcliffe, H.R. Shercliff, P. Bate, and D.B. Miller, Evolution of matt surface topography in aluminium pack rolling: Part II. Effect of material properties, Int. J. Mech. Sci., 46(2004), No. 9, p. 1365.

    Article  Google Scholar 

  18. H. Utsunomiya, M.P.F. Sutcliffe, H.R. Shercliff, P. Bate, and D.B. Miller, Influence of friction on roughening of the matt surface in aluminium pack rolling, Int. J. Mach. Tools Manuf., 45(2005), No. 7–8, p. 803.

    Article  Google Scholar 

  19. S. Lee, J.H. Hwang, M.R. Shankar, S. Chandrasekar, and W.D. Compton, Large strain deformation field in machining, Metall. Mater. Trans. A, 37(2006), No. 5, p. 1633.

    Article  Google Scholar 

  20. X.L. Liu, W.Y. Zhang, C.M. Liu, H.Z. Li, and S.M. Zeng, Microstructure of AZ31 magnesium alloy sheets processed by differential speed rolling, J. Cent. South Univ. Sci. Technol., 39(2008), No. 6, p. 1244.

    Google Scholar 

  21. S.Z. Liu, Surface treatment of copper foil for PCB, Plat. Finish., 30(2008), No. 2, p. 17.

    Google Scholar 

  22. D.C. Yu, D.S. Tan, Y. Wang, J.L. Fan, and W.S. Zhao, Research progress on the surface treatment technics of copper foil used for PCB, Plat. Finish., 25(2006), No. 12, p. 10.

    Google Scholar 

  23. D.T. Zhu, The newest progress of base material used in flexible PCB (4): review and characteristic of development about FCCL, Print. Circ. Inf., (2005), No. 5, p. 6.

  24. H.A. Al-Qureshi, A.N. Klein, and M.C. Fredel, Grain size and surface roughness effect on the instability strains in sheet metal stretching, J. Mater. Process. Technol., 170(2005), No. 1–2, p. 204.

    Article  Google Scholar 

  25. P.D. Wu and D.J. Lloyd, Analysis of surface roughening in AA6111 automotive sheet, Acta Mater., 52(2004), No. 7, p. 1785.

    Article  Google Scholar 

  26. O. Wouters, W.P. Vellinga, R. van Tijum, and J.Th.M. de Hosson, On the evolution of surface roughness during deformation of polycrystalline aluminum alloys, Acta Mater., 53(2005), No. 15, p. 4043.

    Article  Google Scholar 

  27. Y.Z. Dai and F.P. Chiang, On the mechanism of plastic deformation induced surface roughness, J. Eng. Mater. Technol., 114(1992), No. 4, p. 432.

    Article  Google Scholar 

  28. J.K. Lee, F.R. Ehrlich, L.A. Crall, and T.H. Collins, An analysis for the effect of a grain size gradient on torsional and tensile properties, Metall. Trans. A, 19(1988), No. 2, p. 329.

    Article  Google Scholar 

  29. C. McConnell and J.G. Lenard, Friction in cold rolling of a low carbon steel with lubricants, J. Mater. Process. Technol., 99(2000), No. 1–3, p. 86.

    Article  Google Scholar 

  30. W.R.D. Wilson, Friction and lubrication in bulk metalforming processes, J. Appl. Metalwork., 1(1978), No. 1, p. 7.

    Article  Google Scholar 

  31. W.H. Li, Numerical simulation of subcritical crack growth in brittle materials and influence of biaxial stress, Rare Met. Mater. Eng., 38(2009), Suppl. 2, p. 1112.

    Google Scholar 

  32. G.M. Lin and M.E. Fine, Effect of grain size and cold work on the near threshold fatigue crack propagation rate and crack closure in iron, Scripta Metall., 16(1982), p. 1249.

    Article  Google Scholar 

  33. E. Hornbogen and K.H.Z. Gahr, Microstructure and fatigue crack growth in a γ-Fe-Ni-Al alloy, Acta Metall., 24(1976), No. 6, p. 581.

    Article  Google Scholar 

  34. A. Lasalmonie and J.L. Strudel, Influence of grain size on the mechanical behaviour of some high strength materials, J. Mater. Sci., 21(1986), No. 6, p. 1837.

    Article  Google Scholar 

  35. G.T. Gray, J.C. Williams, and A.W. Thompson, Roughness-induced crack closure: an explanation for microstructurally sensitive fatigue crack growth, Metall. Trans. A, 14(1983), No. 2, p. 421.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue-feng Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Xy., Liu, Xf., Zou, Wj. et al. Copper foils with gradient structure in thickness direction and different roughnesses on two surfaces fabricated by double rolling. Int J Miner Metall Mater 20, 1170–1175 (2013). https://doi.org/10.1007/s12613-013-0851-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-013-0851-z

Keywords

Navigation