Biodesulfurization of vanadium-bearing titanomagnetite concentrates and pH control of bioleaching solution

  • Xiao-rong LiuEmail author
  • Sheng-cai Jiang
  • Yan-jun Liu
  • Hui Li
  • Hua-jun Wang


Vanadium-bearing titanomagnetite concentrates were desulfurized with Acidithiobacillus ferrooxidans (A. ferrooxidans). The sulfur content of the concentrates was reduced from 0.69wt% to 0.14wt% after bioleaching for 15 d with a 10% pulp density at 30°C. Maintaining a stable pH value during biodesulfurization was critical because of high acid consumption, resulting from a combination of nonoxidative and oxidative dissolution of pyrrhotite in acid solution. It is discovered that the citric acid-disodium hydrogen phosphate buffer of pH 2.0 can control the solution pH value smoothly in the optimal range of 2.0–3.0 for A. ferrooxidans growth. Using the buffer in the volume fraction range of 5.0%–15.0% stimulates A. ferrooxidans growth and improves the biodesulfurization efficiency. Compared with the buffer-free control case, the maximum increase of biodesulfurization rate is 29.7% using a 10.0vol% buffer. Bioleaching provides an alternative process for desulfurization of vanadium-bearing titanomagnetite ores.


titanomagnetite vanadium biodesulfurization Acidithiobacillus ferrooxidans citric acid disodium hydrogen phosphate 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J.Y. Ma, X.Y. Sun, and R.S. Diao, Theory and Practices of Smelting Vanadium-Containing Titanomagnetites in Blast-Furnace, Metallurgical Industry Press, Beijing, 2000.Google Scholar
  2. [2]
    J.T. Zhang and B. Chen, Occurrence and recycling of main elements in Panxi vanadium-titanium magnetite, Conserv. Util. Miner. Resour., (2008), No. 5, p. 38.Google Scholar
  3. [3]
    N.Y. Liu, H.B. Deng, and H. Wang, Progress of separating pyrrhotite from magnetite with high-sulphur-content, Non-Ferrous Min. Metall., 25(2009), No.5, p.17.Google Scholar
  4. [4]
    J.D. Miller, J. Li, J.C. Davidtz, and F. Vos, A review of pyrrhotite flotation chemistry in the processing of PGM ores, Miner. Eng., 18(2005), No. 8, p. 855.CrossRefGoogle Scholar
  5. [5]
    M.F. He, W.Q. Qin, W.Z. Li, and F. Jiao, Flotation performances of polymorphic pyrrhotite, J. Cent. South Univ., 19(2012), No. 1, p. 238.CrossRefGoogle Scholar
  6. [6]
    R.S. Diao, New understanding about special problems of smelting vanadium-bearing titanomagnetite with BF, Iron Steel, 34(1999), No. 6, p. 12.Google Scholar
  7. [7]
    P. Prayuenyong, Coal biodesulfurization processes, Songklanakarin J. Sci. Technol., 24(2002), No. 3, p. 493.Google Scholar
  8. [8]
    I.P. Ivanov, Main trends in the biotechnological processing of coals: a review, Solid Fuel Chem., 41(2007), No. 1, p. 3.CrossRefGoogle Scholar
  9. [9]
    J. Cara, M.T. Carballo, A. Morán, D. Bonilla, O. Escolano, and J. García Frutos, Biodesulphurisation of high sulphur coal by heap leaching, Fuel, 84(2005), No. 14, p. 1905.CrossRefGoogle Scholar
  10. [10]
    J.J. Ke and H.M. Li, Bacterial leaching of nickel-bearing pyrrhotite, Hydrometallurgy, 82(2006), No. 3–4, p. 127.Google Scholar
  11. [11]
    F.L.S. Cruz, V.A. Oliveira, D. Guimarães, A.D. Souza, and V.A. Leão, High-temperature bioleaching of nickel sulfides: thermodynamic and kinetic implications, Hydrometallurgy, 105(2010), p. 103.CrossRefGoogle Scholar
  12. [12]
    S. Ubaldini, F. Vegli`o, F. Beolchini, L. Toro, and C. Abbruzzese, Gold recovery from a refractory pyrrhotite ore by biooxidation, Int. J. Miner. Process., 60(2000), p. 247.CrossRefGoogle Scholar
  13. [13]
    L.J. Mason and N.M. Rice, The adaptation of Thiobacillus ferrooxidans for the treatment of nickel-iron sulphide concentrates, Miner. Eng., 15(2002), p. 795.CrossRefGoogle Scholar
  14. [14]
    L.R.G. Santos, A.F. Barbosa, A.D. Souza, and V.A. Leáo, Bioleaching of a complex nickel-iron concentrate by mesophile bacteria, Miner. Eng., 19(2006), p. 1251.CrossRefGoogle Scholar
  15. [15]
    N.R. Núñez-Ramírez, A. Solís-Soto, J. López-Miranda, B. Pereyra-Alférez, M. Rutiaga-Quiñónes, L. Medina- Torres, and H. Medrano-Roldán, Zinc bioleaching from an iron concentrate using Acidithiobacillus ferrooxidans strain from Hercules mine of Coahuila, Mexico, Int. J. Miner. Metall. Mater., 18(2011), No. 5, p. 523.CrossRefGoogle Scholar
  16. [16]
    X.R Liu and S.C. Jiang, Bioleaching of pyrrhotite and pyrite using Acidithiobacillus ferrooxidans, Min. Metall. Eng., 26(2006), No. 6, p. 9.Google Scholar
  17. [17]
    M.P. Janzen, R.V. Nicholson, and J.M. Scharer, Pyrrhotite reaction kinetics: reaction rates for oxidation by oxygen, ferric iron, and for nonoxidative dissolution, Geochim. Cosmochim. Acta, 64(2000), No. 9, p. 1511.CrossRefGoogle Scholar
  18. [18]
    N. Belzile, Y.W. Chen, M.F. Cai, and Y.R. Li, A review on pyrrhotite oxidation, J. Geochem. Explor., 84(2004), p. 65.CrossRefGoogle Scholar
  19. [19]
    D.A. Ribeiro, D.A. Maretto, F.C.S. Nogueira, M.J. Silva, F.A.P. Campos, G.B. Domont, R.J. Poppi, and L.M.M. Ottoboni, Heat and phosphate starvation effects on the proteome, morphology and chemical composition of the biomining bacteria Acidithiobacillus ferrooxidans, World J. Microbiol. Biotechnol., 27(2011), No. 6, p. 1469.CrossRefGoogle Scholar
  20. [20]
    C.G. Zhang, Q. Zhang, J. Wang, R.Y. Zhang, H. He, J.L. Xia, and G.Z. Qiu, Effect of anions on growth and sulfur oxidation activity of Acidithiobacillus ferrooxidans, Chin. J. Nonferrous Met., 19(2009), No. 12, p. 2237.Google Scholar

Copyright information

© University of Science and Technology Beijing and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Xiao-rong Liu
    • 1
    Email author
  • Sheng-cai Jiang
    • 2
  • Yan-jun Liu
    • 1
  • Hui Li
    • 1
  • Hua-jun Wang
    • 3
  1. 1.School of Materials Science and EngineeringShanghai Institute of TechnologyShanghaiChina
  2. 2.China Metallurgical Mining CorporationBeijingChina
  3. 3.Civil and Environmental Engineering SchoolUniversity of Science and Technology BeijingBeijingChina

Personalised recommendations