Skip to main content

Advertisement

Log in

Microstructures and impact toughness behavior of Al 5083 alloy processed by cryorolling and afterwards annealing

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

The influence of rolling at liquid nitrogen temperature and annealing on the microstructure and mechanical properties of Al 5083 alloy was studied in this paper. Cryorolled samples of Al 5083 show significant improvements in strength and hardness. The ultimate tensile strength increases up to 340 MPa and 390 MPa for the 30% and 50% cryorolled samples, respectively. The cryorolled samples, with 30% and 50% reduction, were subjected to Charpy impact testing at various temperatures from −190°C to 100°C. It is observed that increasing the percentage of reduction of samples during cryorolling has significant effect on decreasing impact toughness at all temperatures by increasing yield strength and decreasing ductility. Annealing of samples after cryorolling shows remarkable increment in impact toughness through recovery and recrystallization. The average grain size of the 50% cryorolled sample (14 μm) after annealing at 350°C for 1 h is found to be finer than that of the 30% cryorolled sample (25 μm). The scanning electron microscopy (SEM) analysis of fractured surfaces shows a large-size dimpled morphology, resembling the ductile fracture mechanism in the starting material and fibrous structure with very fine dimples in cryorolled samples corresponding to the brittle fracture mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.T. Park, D.Y Hwang, Y.K. Lee, Y.K. Kim, and D.H. Shin, High strain rate superplasticity of submicrometer grained 5083 Al alloy containing scandium fabricated by severe plastic deformation, Mater. Sci. Eng. A, 341(2003), p. 273.

    Article  Google Scholar 

  2. T. Sheppard and N. Raghunathan, Modification of cast structures in Al-Mg alloys by thermal treatments, Mater. Sci. Technol., 5(1989), No. 3, p. 268.

    Article  CAS  Google Scholar 

  3. Y.T. Zhu, T.C. Lowe, and T.G. Langdon, Performance and applications of nanostructured materials produced by severe plastic deformation, Scripta Mater., 51(2004), No. 8, p. 825.

    Article  CAS  Google Scholar 

  4. R.Z. Valiev and T.G. Langdon, Principles of equal-channel angular pressing as a processing tool for grain refinement, Prog. Mater. Sci., 51(2006), No. 7, p. 881.

    Article  CAS  Google Scholar 

  5. B. Cherukuri and R. Srinivasan, Properties of AA6061 processed by multi-axial compressions/forging (MAC/F), Mater. Manuf. Processes, 21(2006), No. 5, p. 519.

    Article  Google Scholar 

  6. C. Xu, Z.J. Horita, and T.G. Langdon, The evolution of homogeneity in an aluminum alloy processed using highpressure torsion, Acta Mater., 56(2008), No. 18, p. 5168.

    Article  CAS  Google Scholar 

  7. Y. Saito, H. Utsunomiya, N. Tsuji, and T. Sakai, Novel ultra-high straining process for bulk materials: development of the accumulative roll-bonding (ARB) process, Acta Mater., 47(1999), No. 2, p. 579.

    Article  CAS  Google Scholar 

  8. Y.M. Wang, M.W. Chen, F.H. Zhou, and E. Ma., High tensile ductility in a nanostructured metal, Nature, 419(2002), No. 6910, p. 912.

    Article  CAS  Google Scholar 

  9. S. Cheng, Y.H. Zao, Y.T. Zhu, and E. Ma, Optimizing the strength and ductility of fine structured 2024 Al alloy by nano-precipitation, Acta Mater., 55(2007), No. 17, p. 5822.

    Article  CAS  Google Scholar 

  10. S.K. Panigrahi and R. Jayaganthan, A study on the mechanical properties of cryorolled Al-Mg-Si alloy, Mater. Sci. Eng. A, 480(2008), No. 1, p. 299.

    Google Scholar 

  11. P. Nageswara Rao, S.K. Panigrahi, and R. Jayaganthan, Effect of annealing and aging treatment on mechanical properties of ultrafine grained Al 6061 alloy, Mater. Sci. Technol., 26(2010), No. 3, p. 371.

    Article  CAS  Google Scholar 

  12. Y.B. Lee, D.H. Shin, K.T Park, and W.J. Nam, Effect of annealing temperature on microstructures and mechanical properties of a 5083 Al alloy deformed at cryogenic temperature, Scripta Mater., 51(2004), No. 4, p. 355.

    Article  CAS  Google Scholar 

  13. Y. Wang, T. Jiao, and E. Ma, Dynamic processes for nanostructure development in Cu after severe cryogenic rolling deformation, Mater. Trans., 44(2003), No. 10, p. 1926.

    Article  CAS  Google Scholar 

  14. U.G. Gang, S.H. Lee and W.J. Nam, The evolution of microstructure and mechanical properties of a 5052 aluminium alloy by the application of cryogenic rolling and warm rolling, Mater. Trans., 50(2009), No. 1, p. 82.

    Article  CAS  Google Scholar 

  15. P. Nageswara Rao and R. Jayaganthan, Effects of warm rolling and ageing after cryogenic rolling on mechanical properties and microstructure of Al 6061 alloy, Mater. Des., 39(2012), p. 226.

    Article  Google Scholar 

  16. U.G. Kang, J.C. Lee, S.W. Jeong and W.J. Nam, The improvement of strength and ductility in ultra-fine grained 5052 Al alloy by cryogenic- and warm-rolling, J. Mater. Sci., 45(2010), No. 17, p. 4739.

    Article  CAS  Google Scholar 

  17. M. Tajally, Z. Huda, and H.H. Masjuki, A comparative analysis of tensile and impact-toughness behavior of coldworked and annealed 7075 aluminum alloy, Int. J. Impact Eng., 37(2010), No. 4, p. 425.

    Article  Google Scholar 

  18. D. Fang, Y. Tian, Q. Duan, S. Wu, Z. Zhang, N. Zhao, and J. Li, Effects of equal channel angular pressing on the strength and toughness of Al-Cu alloys, J. Mater. Sci., 46(2011), No. 14, p. 5002.

    Article  CAS  Google Scholar 

  19. S. Ozden, R, Ekici, and F. Nair, Investigation of impact behaviour of aluminium based SiC particle reinforced metalmatrix composites, Compos Part A, 38(2007), No. 2, p. 484.

    Article  Google Scholar 

  20. V.V. Stolyarov and R.Z. Valiev, Enhanced low temperature impact toughness of nanostructured Ti, Appl. Phys. Lett., 88(2006), No. 4, art. No. 041905.

    Google Scholar 

  21. P. Nageswara Rao, D. Singh, and R. Jayaganthan, Effect of annealing on microstructure and mechanical properties of Al 6061 alloy processed by cryorolling, Mater. Sci. Technol., 29(2013), No. 1, p. 76.

    Article  CAS  Google Scholar 

  22. S.K. Panigrahi and R. Jayaganthan, Effect of rolling temperature on microstructure and mechanical properties of 6063 Al alloy, Mater. Sci. Eng. A, 492(2008), No. 1–2, p. 300.

    Google Scholar 

  23. A. de S. Jayatilaka, Fracture of Engineering Brittle Materials, Applied Science Publishers Ltd., London, 1979, p. 378.

    Google Scholar 

  24. A. Ma, K. Suzuki, Y. Nishida, N. Saito, I. Shigematsu, M. Takagi, H. Iwata, A. Watazu, and T. Imura, Impact toughness of an ultrafine-grained Al-11mass % Si alloy processed by rotary-die equal-channel angular pressing, Acta Mater., 53(2005), No. 1, p. 211.

    Article  CAS  Google Scholar 

  25. Y.T. Zhu and T.G. Langdon, Influence of grain size on deformation mechanisms: an extension to nanocrystalline materials, Mater. Sci. Eng. A, 409(2005), No. 1–2, p. 234.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Jayaganthan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, D., Rao, P.N. & Jayaganthan, R. Microstructures and impact toughness behavior of Al 5083 alloy processed by cryorolling and afterwards annealing. Int J Miner Metall Mater 20, 759–769 (2013). https://doi.org/10.1007/s12613-013-0794-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-013-0794-4

Keywords

Navigation