Skip to main content
Log in

Microbial leaching of chromite overburden from Sukinda mines, Orissa, India using Aspergillus niger

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

Leaching of nickel and cobalt from two physical grades (S1, 125–190 μm, coarser and S3, 53–75 μm, finer) of chromite overburden was achieved by treating the overburden (2% pulp density) with 21-d culture filtrate of an Aspergillus niger strain grown in sucrose medium. Metal dissolution increases with ore roasting at 600°C and decreasing particle size due to the alteration of microstructural properties involving the conversion of goethite to hematite and the increase in surface area and porosity as evident from X-ray diffraction (XRD), thermogravimetry-differential thermal analysis (DT-TGA), and field emission scanning electron microscopy (FESEM). About 65% Ni and 59% Co were recovered from the roasted S3 ore employing bioleaching against 26.87% Ni and 31.3% Co using an equivalent amount of synthetic oxalic acid under identical conditions. The results suggest that other fungal metabolites in the culture filtrate played a positive role in the bioleaching process, making it an efficient green approach in Ni and Co recovery from lateritic chromite overburden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y.V. Swamy, B.B. Kar, and J.K. Mohanty, Physicochemical characterization and sulphatization roasting of low grade nickeliferous laterites, Hydrometallurgy, 69(2003), p. 89.

    Article  CAS  Google Scholar 

  2. C. Acharya, R.N. Kar, and L.B. Sukla, Short Communication: Leaching of Chromite overburden with various native bacterial strains, World J. Microbial. Biotechnol., 14(1998), p. 769.

    Article  CAS  Google Scholar 

  3. S. Mohapatra, S. Bohidar, N. Pradhan, R.N. Kar, and L.B. Sukla, Microbial extraction of nickel from Sukinda chromite overburden by Acidithiobacillus ferrooxidans and Aspergillus strains, Hydrometallurgy, 85(2007), p. 1.

    Article  CAS  Google Scholar 

  4. S. Bohidar, S. Mohapatra, and L.B. Sukla, Nickel recovery from chromite overburden of Sukinda using fungal strains, Int. J. Integr. Biol., 5(2009), p. 103.

    CAS  Google Scholar 

  5. K.O. Konhauser, Microbial weathering, [in] Introduction to Geomicrobiology, Blackwell publishing, United Kingdom, (2007), p. 192.

    Google Scholar 

  6. F. Amiri, S.M. Mousavi, S. Yaghmaei, and S. Sheibani, Recovery of metals from spent refinery hydrocracking catalyst using adapted Aspergillus niger, Hydrometallurgy, 109(2011), p. 65.

    Article  CAS  Google Scholar 

  7. O. Bayraktar, Bioleaching of nickel from equilibrium fluid catalytic cracking catalysts, World J. Microbial. Biotechnol., 21(2005), p. 661.

    Article  CAS  Google Scholar 

  8. H. Brandl, Microbial Leaching of Metals, [in] Biotechnology: A multi-volume comprehensive treatise, Edited by H.J. Rehm and G. Reed in cooperation with A. Pühler and P. Stadler, Wiley-VCH, 2001, p. 191.

    Google Scholar 

  9. M. Çaliskan, The metabolism of oxalic acid, Turk. J. Zool., 24(2000), p. 103.

    Google Scholar 

  10. S.K. Mandal and P.C. Banerjee, Submerged production of oxalic acid from glucose by immobilized Aspergillus niger, Process Biochem., 40(2005), p. 1605.

    Article  CAS  Google Scholar 

  11. S.K. Behera, P.P. Panda, S. Singh, N. Pradhan, L.B. Sukla, and B.K. Mishra, Study on reaction mechanism of bioleaching of nickel and cobalt from lateritic chromite overburdens, Int. Biodeterior. Biodegrad., 65(2011), p. 1035.

    Article  CAS  Google Scholar 

  12. L.B. Sukla and R.P. Das, Kinetics of nickel dissolution from roasted laterites, Trans. Indian Inst. Met, 40(1987), p. 351.

    Google Scholar 

  13. C.R. Yang, W.Q. Qin, S.S. Lai, J. Wang, Y.S. Zhang, F. Jiao, L.Y. Ren, T. Zhuang, and Z.Y. Chang, Bioleaching of a low grade nickel-copper-cobalt sulfide ore, Hydrometallurgy, 106(2011), p. 32.

    Article  CAS  Google Scholar 

  14. Q. Guo, J.K. Qu, T. Qi, G.Y. Wei, and B.B. Han, Activation pretreatment of limonitic laterite ores by alkaliroasting using NaOH, Int. J. Miner. Metall. Mater, 19(2012), p. 100.

    Article  CAS  Google Scholar 

  15. U. Schwertmann, D.G. Schulze, and E. Murad, Identification of ferrihydrite in soils by dissolution kinetics, differential X-ray diffraction and Mössbauer spectroscopy, Soil Sci. Soc. Am. J., 46(1982), p. 869.

    Article  CAS  Google Scholar 

  16. X.W. Liu, Y.L. Feng, H.R. Li, Z.C. Yang, and Z.L. Cai, Recovery of valuable metals from a low-grade nickel ore using an ammonium sulfate roasting-leaching process, Int. J. Miner. Metall. Mater., 19(2012), p. 377.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Supratim Biswas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biswas, S., Samanta, S., Dey, R. et al. Microbial leaching of chromite overburden from Sukinda mines, Orissa, India using Aspergillus niger . Int J Miner Metall Mater 20, 705–712 (2013). https://doi.org/10.1007/s12613-013-0787-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-013-0787-3

Keywords

Navigation