Skip to main content

Advertisement

Log in

High-frequency induction heated sintering of ball milled Fe-WC nanocomposites

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

Fe-WC nanocomposites were successfully fabricated by high-frequency induction heated sintering of ball milled nanostructure powders. The ball milled powders were characterized by X-ray diffraction. Density measurements by the Archimedes method show that all sintered samples have the relative density higher than 95%. Studies on the effects of WC content, milling speed, and milling time indicate that a higher milling speed and a more WC content lead to the improvement of mechanical properties. There is a very good distribution of WC particles in the Fe matrix at the milling speed of 650 r/min. For the sintered sample 20-5-650 (20wt% WC, milling time of 5 h, and milled speed of 650 r/min), the maximum Brinell hardness and yield stress are obtained to be 3.25 GPa and 858 MPa, respectively. All sintered samples have brittle fracture during compression test except the sample 20-5-650.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Aldas and M.D. Mat, Experimental and theoretical analysis of particle distribution in particulate metal matrix composites, J. Mater. Process. Technol., 160(2005), No. 3, p. 289.

    Article  CAS  Google Scholar 

  2. J. Hashim, L. Looney, and M.S.J. Hashmi, Particle distribution in cast metal matrix composites: Part I, J. Mater. Process. Technol., 123(2002), No. 2, p. 251.

    Article  CAS  Google Scholar 

  3. I.J. Shon, B.R. Kim, J.M. Doh, and J.K. Yoon, Consolidation of binderless nanostructured titanium carbide by high-frequency induction heated sintering, Ceram. Int., 36(2010), No. 6, p. 1797.

    Article  CAS  Google Scholar 

  4. H. Romanus, V. Cimalla, J. Schaefer, L. Spie G. Ecke, and J. Pezoldt, Preparation of single phase tungsten carbide by annealing of sputtered tungsten-carbon layers, Thin Solid Films, 359(2000), No. 2, p. 146.

    Article  CAS  Google Scholar 

  5. L. Niu, M. Hojamberdiev, and Y.H. Xu, Preparation of in situ-formed WC/Fe composite on gray cast iron substrate by a centrifugal casting process, J. Mater. Process. Technol., 210(2010), No. 14, p. 1986.

    Article  CAS  Google Scholar 

  6. A.M. Do Nascimento, V. Ocelík, M.C.F. Ierardi, and J.Th.M. De Hosson, Microstructure of reaction zone in WCp/duplex stainless steels matrix composites processing by laser melt injection, Surf. Coat. Technol., 202(2008), No. 10, p. 2113.

    Article  Google Scholar 

  7. M.H. Korkut, O. Yilmaz, and S. Buytoz, Effect of aging on the microstructure and toughness of the interface zone of a gas tungsten arc (GTA) synthesized Fe-Cr-Si-Mo-C coated low carbon steel, Surf. Coat. Technol., 157(2002), No. 1, p. 5.

    Article  CAS  Google Scholar 

  8. K. Miyazaki, S. Ito, N. Koura, N. Yoneda, and K. Asaka, Preparation of tungsten carbide-iron composite using HIP, J. Jpn. Soc. Powder Powder Metall., 37(1990), No. 2, p. 219.

    Article  CAS  Google Scholar 

  9. Q.C. Jiang, X.L. Li, and H.Y. Wang, Fabrication of TiC particulate reinforced magnesium matrix composites, Scripta Mater., 48(2003), No. 6, p.713.

    Article  CAS  Google Scholar 

  10. W.H. Jiang, J. Fei, and X.L. Han, Synthesis of titanium and tungsten carbides in iron matrices, J. Mater. Sci. Lett., 20(2001), No. 3, p. 283.

    Article  CAS  Google Scholar 

  11. M. Razavi, M.R. Rahimipour, and R. Yazdani-Rad, Synthesis of Fe-WC nanocomposite from industrial ferrotungsten via mechanical alloying method, Adv. Appl. Ceram., 110(2011), No. 6, p. 367.

    Article  CAS  Google Scholar 

  12. K. Chu, C.C. Jia, X.B. Liang, and H. Chen, Effect of sintering temperature on the microstructure and thermal conductivity of Al/diamond composites prepared by spark plasma sintering, Int. J. Miner. Metall. Mater., 17(2010), No. 2, p. 234.

    Article  CAS  Google Scholar 

  13. K. Chu, Z.F. Liu, C.C. Jia, H. Chen, X.B. Liang, W.J. Gao, W.H. Tian, and H. Guo, Thermal conductivity of SPS consolidated Cu/diamond composites with Cr-coated diamond particles, J. Alloys Compd., 490(2010), No. 1–2, p. 453.

    Article  CAS  Google Scholar 

  14. J.H. Park, J.K. Yoon, J.M. Doh, B.S. Lee, and I.J. Shon, Simultaneous high-frequency induction heated combustion synthesis and consolidation of nanostructured HfSi2-SiC composite, Ceram. Int., 35(2009), No. 4, p. 1677.

    Article  CAS  Google Scholar 

  15. K.D. Woo, B.R. Kim, E.P. Kwon, D.S. Kang, and I.J. Shon, Properties and rapid consolidation of nanostructured TiC-based hard materials with various binders by a high-frequency induction heated sintering, Ceram. Int., 36(2010), No. 1, p. 351.

    Article  CAS  Google Scholar 

  16. M. Dewidar, Microstructure and mechanical properties of biocompatible high density Ti-6Al-4V/W produced by high frequency induction heating sintering, Mater. Des., 31(2010), No. 8, p. 3964.

    Article  CAS  Google Scholar 

  17. N.R. Park, D.M. Lee, I.Y. Ko, J.K. Yoon, and I.J. Shon, Rapid consolidation of nanocrystalline Al2O3 reinforced Ni-Fe composite from mechanically alloyed powders by high frequency induction heated sintering, Ceram. Int., 35(2009), No. 8, p. 3147.

    Article  CAS  Google Scholar 

  18. H.C. Kim, D.K. Kim, K.D. Woo, I.Y. Ko, and I.J. Shon, Consolidation of binderless WC-TiC by high frequency induction heating sintering, Int. J. Refract. Met. Hard Mater., 26(2008), No. 1, p. 48.

    Article  CAS  Google Scholar 

  19. H.C. Kim, H.K. Park, I.K. Jeong, I.Y. Ko, and I.J. Shon, Sintering of binderless WC-Mo2C hard materials by rapid sintering process, Ceram. Int., 34(2008), No. 6, p. 1419.

    Article  CAS  Google Scholar 

  20. I.J. Shon, I.K. Jeong, I.Y. Ko, J.M. Doh, and K.D. Woo, Sintering behavior and mechanical properties of WC-10Co, WC-10Ni and WC-10Fe hard materials produced by high-frequency induction heated sintering, Ceram. Int., 35(2009), No. 1, p. 339.

    Article  CAS  Google Scholar 

  21. H.M. Rietveld, A profile refinement method for nuclear and magnetic structures, J. Appl. Crystallogr., 2(1969), No. 2, p. 65.

    Article  CAS  Google Scholar 

  22. J. Shackelford, W. Alexander, and J. Park, CRC Handbook of Materials Science & Engineering, CRC Press, Boca Raton, 2001.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Zakeri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zakeri, M., Zanganeh, T. & Najafi, A. High-frequency induction heated sintering of ball milled Fe-WC nanocomposites. Int J Miner Metall Mater 20, 693–699 (2013). https://doi.org/10.1007/s12613-013-0785-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-013-0785-5

Keywords

Navigation