Shape control technology during electrochemical synthesis of gold nanoparticles

  • Xiu-yu Liu
  • Cong-ying Cui
  • Ying-wen Cheng
  • Hou-yi MaEmail author
  • Duo Liu


Gold nanoparticles with different shapes and sizes were prepared by adding gold precursor (HAuCl4) to an electrolyzed aqueous solution of poly(N-vinylpyrrolidone) (PVP) and KNO3, which indicates the good reducing capacity of the PVP-containing solution after being treated by electrolysis. Using a catholyte and an anolyte as the reducing agents for HAuCl4, respectively, most gold nanoparticles were spherical particles in the former case but plate-like particles in the latter case. The change in the pH value of electrolytes caused by the electrolysis of water would be the origin of the differences in shape and morphology of gold nanoparticles. A hypothesis of the H+ or OH catalyzed PVP degradation mechanism was proposed to interpret why the pH value played a key role in determining the shape or morphology of gold nanoparticles. These experiments open up a new method for effectively controlling the shape and morphology of metal nanoparticles by using electrochemical methods.


metal nanoparticles synthesis gold shape control electrochemical methods 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. Ali Umar and M. Oyama, Formation of gold nanoplates on indium tin oxide surface: two-dimensional crystal growth from gold nanoseed particles in the presence of poly (vinylpyrrolidone), Cryst. Growth Des., 6(2006), p. 818.CrossRefGoogle Scholar
  2. [2]
    Y.G. Sun and Y.N. Xia, Shape-controlled synthesis of gold and silver nanoparticles, Science, 298(2002), p. 2176.CrossRefGoogle Scholar
  3. [3]
    P.V. Kamat, Photophysical, photochemical and photocatalytic aspects of metal nanoparticles, J. Phys. Chem. B, 106(2002), p. 7729.CrossRefGoogle Scholar
  4. [4]
    J.B. Jackson and N.J. Halas, Silver nanoshells: variations in morphologies and optical properties, J. Phys. Chem. B, 105(2001), p. 2743.CrossRefGoogle Scholar
  5. [5]
    Y.J. Xiong, B. Wiley, J.Y. Chen, Z.Y. Li, Y.D. Yin, and Y.N. Xia, Corrosion-based synthesis of single-crystal Pd nanoboxes and nanocages and their surface plasmon properties, Angew. Chem. Int. Ed., 44(2005), p. 7913.CrossRefGoogle Scholar
  6. [6]
    B. Wiley, Y.G. Sun, B. Mayers, and Y.N. Xia, Shapecontrolled synthesis of metal nanostructures: the case of silver, Chem. Eur. J., 11(2005), p. 454.CrossRefGoogle Scholar
  7. [7]
    J.E. Millstone, S. Park, K.L. Shuford, L.D. Qin, G.C. Schatz, and C.A. Mirkin, Observation of a quadrupole plasmon mode for a colloidal solution of gold nanoprisms, J. Am. Chem. Soc., 127(2005), p. 5312.CrossRefGoogle Scholar
  8. [8]
    S.S. Shankar, A. Rai, B. Ankamwar, A. Singh, A. Ahmad, and M. Sastry, Biological synthesis of triangular gold nanoprisms, Nat. Mater., 3(2004), p. 482.CrossRefGoogle Scholar
  9. [9]
    B.S. Yin, H.Y. Ma, S.Y. Wang, and S.H. Chen, Electrochemical synthesis of silver nanoparticles under protection of poly(N-vinylpyrrolidone), J. Phys. Chem. B, 107(2003), p. 8898.CrossRefGoogle Scholar
  10. [10]
    N.R. Jana and X.G. Peng, Single-phase and gram-scale routes toward nearly monodisperse Au and other noble metal nanocrystals, J.Am.Chem. Soc., 125(2003), p. 14280.CrossRefGoogle Scholar
  11. [11]
    E. Rossinyol, J. Arbiol, F. Peiró, A. Cornet, J.R. Morante, B. Tian, T. Bo, and D. Zhao, Nanostructured metal oxides synthesized by hard template method for gas sensing applications, Sens. Actuators B, 109(2005), p. 57.CrossRefGoogle Scholar
  12. [12]
    Y.G. Sun, B. Gates, B. Mayers, and Y.N. Xia, Crystalline silver nanowires by soft solution processing, Nano Lett., 2(2002), p. 165.CrossRefGoogle Scholar
  13. [13]
    H.H. Huang, X.P. Ni, G.L. Loy, C.H. Chew, K.L. Tan, F.C. Loh, J.F. Deng, and G.Q. Xu, Photochemical formation of silver nanoparticles in poly(N-vinylpyrrolidone), Langmuir, 12(1996), p. 909.CrossRefGoogle Scholar
  14. [14]
    Y.G. Sun, B. Mayers, and Y.N. Xia, Transformation of silver nanospheres into nanobelts and triangular nanoplates through a thermal process, Nano Lett., 3(2003), p. 675.CrossRefGoogle Scholar
  15. [15]
    I. Haas, S. Shanmugam, and A. Gedanken, Pulsed sonoelectrochemical synthesis of size-controlled copper nanoparticles stabilized by poly(N-vinylpyrrolidone), J. Phys. Chem. B, 110(2006), p. 16947.CrossRefGoogle Scholar
  16. [16]
    C. Kan, X.G. Zhu, and G.H. Wang, Single-crystalline gold microplates: synthesis, characterization, and thermal stability, J. Phys. Chem. B, 110(2006), p. 4651.CrossRefGoogle Scholar
  17. [17]
    S. Kundu, K. Wang, and H. Liang, Size-selective synthesis and catalytic application of polyelectrolyte encapsulated gold nanoparticles using microwave irradiation, J. Phys. Chem. C, 113(2009), p. 5157.CrossRefGoogle Scholar
  18. [18]
    D.K. Park, S.J. Lee, J.H. Lee, M.Y. Choi, and S.W. Han, Effect of polymeric stabilizers on the catalytic activity of Pt nanoparticles synthesized by laser ablation, Chem. Phys. Lett., 484(2010), p. 254.CrossRefGoogle Scholar
  19. [19]
    I. Pastoriza-Santos and L.M. Liz-Marzán, Formation of PVP-protected metal nanoparticles in DMF, Langmuir, 18(2002), p. 2888.CrossRefGoogle Scholar
  20. [20]
    C.E. Hoppe, M. Lazzari, I. Pardiñas-Blanco, and M.A. López-Quintela, One-step synthesis of gold and silver hydrosols using poly(N-vinyl-2-pyrrolidone) as a reducing agent, Langmuir, 22(2006), p. 7027.CrossRefGoogle Scholar
  21. [21]
    Y.J. Xiong, I. Washio, J.Y. Chen, H. Cai, Z.Y. Li, and Y.N. Xia, Poly(vinyl pyrrolidone): a dual functional reductant and stabilizer for the facile synthesis of noble metal nanoplates in aqueous solutions, Langmuir, 22(2006), p. 8563.CrossRefGoogle Scholar
  22. [22]
    W. Pan, X.K. Zhang, H.Y. Ma, and J.T. Zhang, Electrochemical synthesis, voltammetric behavior, and electrocatalytic activity of Pd nanoparticles, J. Phys. Chem. C, 112(2008), p. 2456.CrossRefGoogle Scholar
  23. [23]
    S.X. Huang, H.Y. Ma, X.K. Zhang, F.F. Yong, X.L. Feng, W. Pan, X.N. Wang, Y. Wang, and S.H. Chen, Electrochemical synthesis of gold nanocrystals and their 1D and 2D organization, J. Phys. Chem. B, 109(2005), p. 19823.CrossRefGoogle Scholar
  24. [24]
    C. Xue, Z. Li, and C.A. Mirkin, Large-scale assembly of single-crystal silver nanoprism monolayers, Small, 1(2005), p. 513.CrossRefGoogle Scholar
  25. [25]
    D. Aherne, D.M. Ledwith, M. Gara, and J.M. Kelly, Optical properties and growth aspects of silver nanoprisms produced by a highly reproducible and rapid synthesis at room temperature, Adv. Funct. Mater., 18(2008), p. 2005.CrossRefGoogle Scholar

Copyright information

© University of Science and Technology Beijing and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Xiu-yu Liu
    • 1
    • 2
  • Cong-ying Cui
    • 3
  • Ying-wen Cheng
    • 3
  • Hou-yi Ma
    • 3
    Email author
  • Duo Liu
    • 1
  1. 1.State Key Lab of Crystal Materials, Institute of Crystal MaterialsShandong UniversityJinanChina
  2. 2.New Material Institute of Shandong Academy of SciencesJinanChina
  3. 3.School of Chemistry and Chemical EngineeringShandong UniversityJinanChina

Personalised recommendations