Skip to main content
Log in

Transformation character of ferrite formation by a ledge mechanism under a mixed-control model

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

A mixed-control model was developed to study the transformation character of ferrite formation by a ledge mechanism. A numerical two-dimensional diffusion-field model was combined to describe the evolution of the diffusion field ahead of the migrating austenite/ ferrite interface. The calculation results show that the bulk diffusion-controlled model leads to a deviation from experimental results under large solute supersaturation. In the mixed-control model, solute supersaturation and a parameter Z together determine the transformation character, which is quantified by the normalized concentration of carbon in austenite at the austenite/ferrite interface. By comparing with experimental data, the pre-exponential factor of interface mobility, M 0, is estimated within the range from 0.10 to 0.60 mol·m·J−1·s−1 for the alloys with 0.11wt%–0.49wt% C at 700–740°C. For a certain Fe-C alloy, the trend of the transformation character relies on the magnitude of M 0 as the transformation temperature decreases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. I. Aaronson, Decomposition of Austenite by Diffusional Processes, Interscien Publishers, New York, 1962, p.453.

    Google Scholar 

  2. E. P. Simonen, H. I. Aaronson, and R. Trivedi, Lengthening kinetics of ferrite and bainite sideplates, Metall. Trans., 4(1973), p.1239.

    Article  CAS  Google Scholar 

  3. K. R. Kinsman, E. Eichen, and H. I. Aaronson, Thickening kinetics of proeutectoid ferrite plates in Fe-C alloys, Metall. Trans. A, 6(1975), p.303.

    Google Scholar 

  4. M. Enomoto, Computer modeling of the growth kinetics of ledged interphase boundaries: I. Single step and infinite train of steps, Acta Metall., 35(1987), p.935.

    Article  CAS  Google Scholar 

  5. M. Enomoto, Computer modeling of the growth kinetics of ledged interphase boundaries: II. Finite train of steps, Acta Metall., 35(1987), p.947.

    Article  CAS  Google Scholar 

  6. J. W. Christian, The Theory of Transformations in Metals and Alloys, 3rd Ed., Pergamon Press, Oxford, 2002, p.480.

    Book  Google Scholar 

  7. G. P. Krielaart, J. Sietsma, and S. van der Zwaag, Ferrite formation in Fe-C alloys during austenite decomposition under non-equilibrium interface conditions, Mater. Sci. Eng. A, 237(1997), p.216.

    Article  Google Scholar 

  8. G. P. Krielaart and S. van der Zwaag, Simulations of pro-eutectoid ferrite formation using a mixed control growth model, Mater. Sci. Eng. A, 246(1998), p.104.

    Article  Google Scholar 

  9. J. Svoboda, F.D. Fischer, P. Fratzl, E. Gamsjäger, and N.K. Simha, Kinetics of interfaces during diffusional transformations, Acta Mater., 49(2001), p.1249.

    Article  CAS  Google Scholar 

  10. J. Sietsma and S. van der Zwaag, A concise model for mixed-mode phase transformations in the solid state, Acta Mater., 52(2004), p.4143.

    Article  CAS  Google Scholar 

  11. C. Bos and J. Sietsma, A mixed-mode model for partitioning phase transformations, Scripta Mater., 57(2007), p.1085.

    Article  CAS  Google Scholar 

  12. Y. Van Leeuwen, J. Sietsma, and S. van der Zwaag, The influence of carbon diffusion on the character of the γ-α phase transformation in steel, ISIJ Int., 43(2003), p.767.

    Article  Google Scholar 

  13. T. Y. Hsu, Principle of Phase Transformation, Science Press, Beijing, 2000, p.356.

    Google Scholar 

  14. R. Trivedi and G.M. Pound, Effect of concentration-dependent diffusion coefficient on the migration of interphase boundaries, J. Appl. Phys., 38(1967), p.3569.

    Article  CAS  Google Scholar 

  15. J. Agren, A revised expression for the diffusivity of carbon in binary Fe-C austenite, Scripta Metall., 20(1986), p.1507.

    Article  CAS  Google Scholar 

  16. G. Spanos, R.A. Masumura, R.A. Vandermeer, and M. Enomoto, The evolution and growth kinetics of precipitate plates growing by the ledge mechanism, Acta Metall. Mater., 42(1994), p.4165.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-gang Yang.

Additional information

This work was financially supported by the National Natural Science Foundation of China (Nos.51171087 and 51071089) and the Specialized Research Fund for the Doctoral Program of Higher Education (No.20070003006).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Zq., Yang, Zg., Li, Zd. et al. Transformation character of ferrite formation by a ledge mechanism under a mixed-control model. Int J Miner Metall Mater 19, 428–433 (2012). https://doi.org/10.1007/s12613-012-0574-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-012-0574-6

Keywords

Navigation