Skip to main content
Log in

Preparation and performance of dye-sensitized solar cells based on ZnO-modified TiO2 electrodes

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

The ZnO-modified TiO2 electrode was prepared by adding Zn(CH3COO)2·2H2O to the TiO2 colloid during the sol-gel production process, and was used in dye-sensitized solar cells (DSCs). The open circuit voltage (V OC) and fill factor (ff) of the cells were improved significantly. The performances of the ZnO-modified TiO2 electrode such as dark current, transient photocurrent, impedance, absorption spectra, and flat band potential (V fb) were investigated. It is found that the interface charge recombination impedance increases and V fb shifts about 200 mV toward the cathodic potential. The effect mechanism of ZnO modification on the performance of DSCs may be that ZnO occupies the surface states of the TiO2 film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. O’Regan and M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 film, Nature, 353(1991), p.737.

    Article  Google Scholar 

  2. C.J. Barbé, F. Arendse, P. Comte, et al., Nanocrystalline titanium oxide electrodes for photovoltaic applications, J. Am. Ceram. Soc., 80(1997), p.3157.

    Article  Google Scholar 

  3. M. Grätzel, Photoelectrochemical cells, Nature, 414(2001), p.338.

    Article  PubMed  ADS  Google Scholar 

  4. J. Yamamoto, A. Tan, R. Shiratsuchi, et al., A 4% efficient dye-sensitized solar cell fabricated from cathodically electrosynthesized composite titania films, Adv. Mater., 15(2003), p.1823.

    Article  CAS  Google Scholar 

  5. W. Kubo, T. Kitamura, K. Hanabusa, et al., Quasi-solid-state dye-sensitized solar cells using room temperature molten salts and a low molecular weight gelator, Chem. Commun., (2002), p.374.

  6. K. Tennakone, G.R.R.A. Kumara, I.R.M. Kottegoda, et al., An efficient dye-sensitized photoelectrochemical solar cell made from oxides of tin and zinc, Chem. Commun., 1999, No.1, p.15.

  7. X. Sheng, Y. Zhao, J. Zhai, et al., Electro-hydrodynamic fabrication of ZnO-based dye sensitized solar cells, Appl. Phys. A, 87(2007), p.715.

    Article  CAS  ADS  Google Scholar 

  8. N.G. Park, M.G. Kang, K.M. Kim, et al., Morphological and photoelectrochemical characterization of core-shell nanoparticle films for dye-sensitized solar cells: ZnO type shell on SnO2 and TiO2 cores, Langmuir, 20(2004), p.4246.

    Article  CAS  PubMed  Google Scholar 

  9. E. Palomares, J.N. Clifford, S.A. Haque, et al., Control of charge recombination dynamics in dye sensitized solar cells by the use of conformally deposited metal oxide blocking layers, J. Am. Chem. Soc., 125(2003), p.475.

    Article  CAS  PubMed  Google Scholar 

  10. J. Van de Lagemaat, N.G. Park, and A.J. Frank, Influence of electrical potential distribution charge transport and recombination on the photopotential and photocurrent conversion efficiency of dye-sensitized nanocrystalline TiO2 solar cells: A study by electrical impedance and optical modulation techniques, J. Phys. Chem. B, 104(2000), p.2044.

    Article  CAS  Google Scholar 

  11. S.G. Chen, S. Chappel, Y. Diamant, et al., Preparation of Nb2O5 coated TiO2 nanoporous electrodes and their application in dye-sensitized solar cells, Chem. Mater., 13(2001), p.4629.

    Article  CAS  Google Scholar 

  12. H.S. Jung, J.K. Lee, and M. Nastasi, Preparation of nanoporous MgO-coated TiO2 nanoparticles and their application to the electrode of dye-sensitized solar cells, Langmuir, 21(2005), p.10332.

    Article  CAS  PubMed  Google Scholar 

  13. X.T. Zhang, I. Sutanto, T. Taguchi, et al., Al2O3-coated nanoporous TiO2 electrode for solid-state dye-sensitized solar cell, Sol. Energy. Mater. Sol. Cells, 80(2003), p.315.

    Article  CAS  Google Scholar 

  14. Z.S. Wang, M. Yanagida, K. Sayama, et al., Electronic-insulating coating of CaCO3 on TiO2 electrode in dye-sensitized solar cells: Improvement of electron lifetime and efficiency, Chem. Mater., 18(2006), p.2912.

    Article  CAS  Google Scholar 

  15. S.S. Kim, J.H. Yum, and Y.E. Sung, Flexible dye-sensitized solar cells using ZnO coated TiO2 nanoparticles, J. Photochem. Photobiol. A, 171(2005), p.269.

    Article  CAS  Google Scholar 

  16. K.E. Kim, S.R. Jang, J. Park, et al., Enhancement in the performance of dye-sensitized solar cells containing ZnO-covered TiO2 electrodes prepared by thermal chemical vapor deposition, Sol. Energy. Mater. Sol. Cells, 91(2007), p.366.

    Article  CAS  Google Scholar 

  17. S.J. Roh, R.S. Mane, S.K. Min, et al., Achievement of 4.51% conversion efficiency using ZnO recombination barrier layer in TiO2 based dye-sensitized solar cells, Appl. Phys. Lett., 89(2006), Art. No.253512.

  18. M.K. Nazeeruddin, A. Kay, I. Rodicio, et al., Conversion of light to electricity by cis-X2bis(2,2′-bipyridyl-4,4′-dicarboxylate) ruthenium(II) charge transfer sensitizers (X=Cl, Br, I, CN, and SCN) on nanocrystalline TiO2 electrodes, J. Am. Chem. Soc., 115(1993), p.6382.

    Article  CAS  Google Scholar 

  19. M. Wang, Q.L. Zhang, Y.X. Weng, et al., Investigation of mechanisms of enhanced open-circuit photovoltage of dye-sensitized solar cells based the electrolyte containing 1-hexyl-3-methylimidazolium iodide, Chin. Phys. Lett., 23(2006), p.724.

    Article  MATH  CAS  ADS  Google Scholar 

  20. G. Redmond and D. Fitzmaurice, Spectroscopic determination of flatband potentials for polycrystalline TiO2 electrodes in nonaqueous solvents, J. Phys. Chem., 97(1993), p.1426.

    Article  CAS  Google Scholar 

  21. T. Hoshikawa, R. Kikuchi, and K.J. Eguchi, Impedance analysis for dye-sensitized solar cells with a reference electrode, Electroanal. Chem., 588(2006), p.59.

    Article  CAS  Google Scholar 

  22. N. Koide, A. Islam, Y. Chiba, et al., Improvement of efficiency of dye-sensitized solar cells based on analysis of equivalent circuit, J. Photochem. Photobiol. A, 182(2006), p.296.

    Article  CAS  Google Scholar 

  23. G. Schlichthörl, S.Y. Huang, J. Sprague, et al., Band edge movement and recombination kinetics in dye-sensitized nanocrystalline TiO2 solar cells: A study by intensity modulated photovoltage spectroscopy, J. Phys. Chem. B, 101(1997), p.8141.

    Article  Google Scholar 

  24. L. Dloczik, O. IIeperuma, I. Lauermann, et al., Dynamic response of dye-sensitized nanocrystalline solar cells: characterization by intensity-modulated photocurrent spectroscopy, J. Phys. Chem. B, 101(1997), p.10281.

    Article  CAS  Google Scholar 

  25. A.L. Linsebigler, G. Lu, and J.T. Yates, Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results, Chem. Rev., 95(1995), p.735.

    Article  CAS  Google Scholar 

  26. X. Yin, H. Zhao, L.P. Chen, et al., The effects of pyridine derivative additives on interface processes at nanocrystalline TiO2 thin film in dye-sensitized solar cells, Surf. Interface Anal., 39(2007), p.809.

    Article  CAS  Google Scholar 

  27. Y. Liu, A. Hagfeldt, X.R. Xiao, et al., Investigation of influence of redox species on the interfacial energetics of a dye-sensitized nanoporous TiO2 solar cell, Sol. Energy. Mater. Sol. Cells, 55(1998), p.267.

    Article  CAS  Google Scholar 

  28. D.F. Watson and G.J. Meyer, Cation effects in nanocrystalline solar cells, Coord. Chem. Rev., 248(2004), p.1391.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng-jun Li.

Additional information

This work was financially supported by the Major State Basic Research Development Program of China (No.2006CB202605) and the National Natural Science Foundation of China (No.50473055).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Sj., Lin, Y., Tan, Ww. et al. Preparation and performance of dye-sensitized solar cells based on ZnO-modified TiO2 electrodes. Int J Miner Metall Mater 17, 92–97 (2010). https://doi.org/10.1007/s12613-010-0116-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-010-0116-z

Keywords

Navigation