Skip to main content
Log in

Les micronutriments chez le sujet vieillissant

Micronutrients in elderly

  • Mise au Point / Update
  • Published:
Les cahiers de l'année gérontologique

Résumé

Parmi les facteurs environnementaux qui conditionnent le vieillissement, à côté des activités physiques et des activités sociales qui ont aussi une place prépondérante, la nutrition apparaît comme un élément clef d’un vieillissement harmonieux. Plusieurs études épidémiologiques soulignent le lien entre nutrition et santé chez le sujet vieillissant. La théorie radicalaire du vieillissement postule qu’apparaît avec l’âge une majoration des processus oxydatifs dont l’importance pourrait avoir un rôle dans le vieillissement réussi. Les effets délétères des espèces actives de l’oxygène, associés à un déficit des moyens de défense antiradicalaire de l’organisme, conduisent à une rupture d’équilibre entre systèmes pro-et antioxydant, et favoriseraient la sénescence. D’où l’importance des micronutriments et de leur stabilité dans le processus de vieillissement. Un certain nombre de pathologies chroniques communes chez le sujet âgé seraient en fait la conséquence des dommages radicalaires, principalement de la peroxydation lipidique qui atteint avant tout les membranes biologiques, de la modification des acides nucléiques, et des altérations protéiques portant à la fois sur les protéines de structure et les protéines ayant des fonctions précises (hormones, enzymes). C’est ainsi que l’on atteint le rôle primordial des micronutriments et son rôle essentiel pour la prévention du déficit fonctionnel.

Abstract

Nutrition appears, with exercise and social activities, as a key element of healthy aging. Numerous epidemiological studies and interventional trials have strongly suggested a link, in aging, between an adequate nutritional status and health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Références

  1. Martin A (2001) Apports nutritionnels conseillés pour la population française. In: Martin A (editor) Tec et Doc, Paris

  2. Ferry M, Mischlich D, Alix E, et al (2012) Nutrition de la personne âgée. Aspects fondamentaux, cliniques et psychosociaux. 4e édition. Abrégés de médecine. Elsevier-Masson, Paris

    Google Scholar 

  3. Euronut Seneca (1991) Nutrition and the elderly in Europe. Eur J Clin Nutr 45(Suppl 3):1–185

    Google Scholar 

  4. Ferry M, Sidobre B, Lambertin A, Barberger-Gateau P (2005) The Solinut study: analysis of the interaction between nutrition and loneliness in persons aged over 70 years. J Nutr Health Aging 9:3230–3237

    Google Scholar 

  5. Le Grusse J, Watier B (1993) Les vitamines, données biochimiques nutritionnelles et cliniques. 303 pages

    Google Scholar 

  6. Niki E (2013) Role of vitamin E as a lipid-soluble peroxyl radical scavenger: in vitro and in vivo evidence. Free Radic Biol Med 13;127–5

    Google Scholar 

  7. Mecocci P, Fanó G, Fulle S, et al (1999) Age-dependent increases in oxidative damage to DNA, lipids, and proteins in human skeletal muscle. Free Radic Biol Med 26:303–308

    Article  PubMed  CAS  Google Scholar 

  8. Kado DM, Karlamangla AS, Huang MH, et al (2005) Homocysteine versus the vitamins folate, B6, and B12 as predictors of cognitive function and decline in older high-functioning adults: MacArthur Studies of Successful Aging. Am J Med 118:161–167

    Article  PubMed  CAS  Google Scholar 

  9. Ble A, Cherubini A, Volpato S, et al (2006) Lower plasma vitamin E levels are associated with the frailty syndrome: the InCHIANTI study. J Gerontol A Biol Sci Med Sci 61:278–283

    Article  PubMed  Google Scholar 

  10. Bartali B, Semba RD, Frongillo EA, et al (2006) Low micronutrient levels as a predictor of incident disability in older women. Arch Intern Med 166:2335–23340

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Cesari M, Pahor M, Bartali B, et al (2004) Antioxidants and physical performance in elderly persons: the Invecchiare in Chianti (InCHIANTI) study. Am J Clin Nutr 79:289–294

    PubMed  CAS  Google Scholar 

  12. Alipanah N, Varadhan R, Sun K, et al (2009) Low serum carotenoids are associated with a decline in walking speed in older women. J Nutr Health Aging 13:170–175

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Haller J, Weggemans RM, Lammi-Keefe CJ, Ferry M (1991) SENECA nutritional status: blood vitamins A, E, B6, B12, folic acid and carotene. Eur J Clin Nutr 45:S63–S82

    Google Scholar 

  14. Haller J, Weggemans RM, Lammi-Keefe CJ, Ferry M (1996) Changes in the vitamin status of elderly Europeans: plasma vitamins A, E, B-6, B-12, folic acid and carotenoids. SENECA Investigators. Eur J Clin Nutr 50(Suppl 2):S32–S46

    Google Scholar 

  15. Filiberti R, Giacosa A, Brignoli O (1997) High-risk subjects for vitamin deficiency. Eur J Cancer Prev 6:S37–S42

    Article  PubMed  Google Scholar 

  16. Pitkin SR, Savage LM (2004) Age-related vulnerability to diencephalic amnesia produced by thiamine deficiency: the role of time of insult. Behav Brain Res 148:93–105

    Article  PubMed  CAS  Google Scholar 

  17. Roussel AM, Ferry M (2002) Stress oxydant et vieillissement. Nutr Clin Metab 16:285–292

    Article  CAS  Google Scholar 

  18. Ames BN, Shigenaga MK, Hagen TM (1993) Oxidants, antioxidants, and the degenerative diseases of aging. Proc Natl Acad Sci USA 90:7915–7922

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Biesalski HK (2002) Free radical theory of aging. Curr Opin Clin Nutr Metab Care 1:S5–S10

    Article  Google Scholar 

  20. Tucker KL, Qiao N, Scott T, et al (2005) High homocysteine and low B vitamins predict cognitive decline in aging men: the Veterans Affairs Normative Aging Study. Am J Clin Nut 82:627–635

    CAS  Google Scholar 

  21. Mattson MP, Kruman II, Duan W (2002) Folic acid and homocysteine in age-related disease. Ageing Res Rev 1:95–111

    Article  PubMed  CAS  Google Scholar 

  22. Durga J, van Boxtel MP, Schouten EG, et al (2007) Effect of 3-year folic acid supplementation on cognitive function in older adults in the FACIT trial: a randomised, double blind controlled trial. Lancet 369:208–216

    Article  PubMed  CAS  Google Scholar 

  23. Ferry M, Coley N, Andrieu S, et al (2013) How to designe nutritional intervention trials to slow cognitive decline in apparently healthy populations and apply for efficacy claims: a statement from the International Academy on Nutrition and Aging Task Force. J Nutr Health Aging 17:619–624

    Article  PubMed  CAS  Google Scholar 

  24. Bischoff-Ferrari HA, Dawson-Hughes B, Willett WC, et al (2004) Effect of Vitamin D on falls: a meta-analysis. JAMA 291:1999–2006

    Article  PubMed  CAS  Google Scholar 

  25. Rolland Y, de Souto Barreto P, Abellan Van Kan G, et al (2013) Vitamin D supplementation in older adults: searching for specific guidelines in nursing homes. J Nutr Health Aging 17:402–412

    Article  PubMed  CAS  Google Scholar 

  26. Cynober L, Alix E, Arnaud-Battandier F, et al (2000) Apports nutritionnels conseillés chez la personne âgée. Nutr Clin Metab 14:1S–64S

    Article  Google Scholar 

  27. Chapuy MC, Arlot ME, Duboeuf F, et al (1992) Vitamin D3 and calcium to prevent hip fractures in elderly women. N Engl J Med 327:1637–1642

    Article  PubMed  CAS  Google Scholar 

  28. Bonjour JP, Benoit V, Pourchaire O, et al (2009) Inhibition of markers of bone resorption by consumption of vitamin D and calcium-fortified soft plain cheese by institutionalised elderly women. Br J Nutr 102:962–966

    Article  PubMed  CAS  Google Scholar 

  29. da Silva Ferreira T, Torres MR, Sanjuliani AF (2013) Dietary calcium intake is associated with adiposity, metabolic profile, inflammatory state and blood pressure, but not with erythrocyte intracellular calcium and endothelial function in healthy premenopausal women. Br J Nutr 110:1079–1088

    Article  PubMed  Google Scholar 

  30. Martin BJ, Milligan K (1987) Diuretic associated hypomagnesemia in the elderly. Arch Intern Med 147:1768–1771

    Article  PubMed  CAS  Google Scholar 

  31. Beck KL, Heath AL (2013) Dietary approaches to assessing ironrelated nutrition. Curr Opin Clin Nutr Metab Care 16:712–718

    Article  PubMed  CAS  Google Scholar 

  32. Fleming DJ, Tucker KL, Jacques PF, et al (2002) Dietary factors associated with the risk of high iron stores in the elderly Framingham Heart Study cohort. Am J Clin Nutr 76:1375–1384

    PubMed  CAS  Google Scholar 

  33. Doorn JM, Kruer MC (2013) Newly characterized forms of neurodegeneration with brain iron accumulation. Curr Neurol Neurosci Rep 12:413

    Article  Google Scholar 

  34. McClain CJ, McClain M, Barve S, et al (2002) Trace metal and the elderly. Clin Geriat Med 18:801–808

    Article  Google Scholar 

  35. Briefel RR, Bialostosky K, Kennedy-Stephanson J, et al (2000) Zinc intake of the US population: findings from the third National Health and Nutrition Examination Survey, 1988–1994. J Nutr 130:1367S–1373S

    PubMed  CAS  Google Scholar 

  36. Meunier N, O’Connor JM, Maiani G, et al (2005) Importance of zinc in the Elderly: The ZENITH study. Eur J Clin Nutr 59: S37–S41

    Article  PubMed  Google Scholar 

  37. Klug A, Schawabe JWR (1995) Zinc fingers. FASEB J 9:597–604

    PubMed  CAS  Google Scholar 

  38. Lovell MA, Smith JL, Xiong S, Markesbery WR (2005) Alterations in zinc transporter protein-1 in the brain of subjects with mild cognitive impairment, early and late-stage Alzheimer disesase. Neurotox Res 7:265–271

    Article  PubMed  CAS  Google Scholar 

  39. Wessels I, Haase H, Engelhardt G, et al (2013) Zinc deficiency induces production of the proinflammatory cytokines IL-1β and TNFα in promyeloid cells via epigenetic and redox-dependent mechanisms. J Nutr Biochem 24:289–297

    Article  PubMed  CAS  Google Scholar 

  40. Faure P, Ducros V, Couzy F, et al (2005) Rapidly exchangeable pool study of zinc in free-living or institutionalized elderly women. Nutrition 21:831–837

    Article  PubMed  CAS  Google Scholar 

  41. Coyle P, Zalewski PD, Philocox JC, et al (1994) Measurement of zinc in hepatocytes by using a fluorescent probe, zinquin:relationship to metallothionein and intracellular zinc. Biochem J 303:781–786

    PubMed  CAS  PubMed Central  Google Scholar 

  42. Johnson MA, Murphy CL (1988) Adverse effects of high dietary iron and ascorbic acid on copper status in copper-deficient and copper-adequate rats. Am J Clin Nutr 47:96–101

    PubMed  CAS  Google Scholar 

  43. Prasad AS (2003) Zinc deficiency. BMJ 326:409–410

    Article  PubMed  PubMed Central  Google Scholar 

  44. Pae M, Meydani SN, Wu D (2012) The role of nutrition in enhancing immunity in aging. Aging Dis 3:91–129

    PubMed  PubMed Central  Google Scholar 

  45. Bogden JD, Oleske JM, Lavenhak MA (1990) Effects of one year of supplementation with zinc and other micronutriments on cellular immunity in the elderly. J Am Coll Nutr 9:214–225

    Article  PubMed  CAS  Google Scholar 

  46. Liu S, Madiai F, Hackshaw KV, et al (2011) The large zinc finger protein ZAS3 is a critical modulator of osteoclastogenesis. PLoS One 6

  47. Johnson CC, Fordyce FM, Rayman MP (2010) Symposium on ‘Geographical and geological influences on nutrition’: factors controlling the distribution of selenium in the environment and their impact on health and nutrition. Proc Nutr Soc 1:119–132

    Article  Google Scholar 

  48. Rayman MP (2012) Selenium and human health. Lancet 379: 1256–1268

    Article  PubMed  CAS  Google Scholar 

  49. Bates CJ, Thane CW, Prentice A, Delves HT (2002) Selenium status and its correlates in a british national diet and nutrition survey: people aged 65 years and over. J Trace Elem Med Biol 16:1–8

    Article  PubMed  CAS  Google Scholar 

  50. Ducros V, Faure P, Ferry M, et al (1997) The sizes of the exchangeable pools of selenium in elderly women and their relation to institutionalization. Br J Nutr 78:379–396

    Article  PubMed  CAS  Google Scholar 

  51. McCann JC, Ames BN (2011) Adaptive dysfunction of selenoproteins from the perspective of the triage theory: why modest selenium deficiency may increase risk of diseases of aging. FASEB J 25:1793–1814

    Article  PubMed  CAS  Google Scholar 

  52. Köhrle J, Jakob F, Contempré B, Dumont JE (2005) Selenium, the thyroid, and the endocrine system. Endocr Rev 7:944–984

    Article  Google Scholar 

  53. Burk RF, Hill KE (2005) Selenoprotein P: an extracellular protein with unique physical characteristics and a role in selenium homeostasis. Annu Rev Nutr 25:215–235

    Article  PubMed  CAS  Google Scholar 

  54. Kade IJ, Balogun BD, Rocha JB (2013) In vitro glutathione peroxidase mimicry of ebselen is linked to its oxidation of critical thiols on key cerebral suphydryl proteins — A novel component of its GPx-mimic antioxidant mechanism emerging from its thiol-modulated toxicology and pharmacology. Chem Biol Interact 206:27–36

    Article  PubMed  CAS  Google Scholar 

  55. Monget AL, Richard MJ, Cournot MP et al (1996) Effects of 6 months of supplementation with differents combinations of an association of anti-oxidant nutrient on biochemical parameters and markers of the anti-oxidant defense system in the elderly. Eur J Clin Nutr 50:443–449

    PubMed  CAS  Google Scholar 

  56. Ducros V, Ferry M, Faure P (2000) Distribution of selenium in plasma of French women relative to age and selenium status. Clin Chem 5:732–733

    Google Scholar 

  57. Rayman MP (2009) Selenoproteins and human health: insights from epidemiological data. Biochim Biophys Acta 1790:1533–1540

    Article  PubMed  CAS  Google Scholar 

  58. Benton D (2002) Selenium intake, mood and other aspects of psychological functioning. Nutr Neurosci 6:363–374

    Article  Google Scholar 

  59. Sher L (2002) Role of selenium depression on mood and behaviour. Med Hypothesis 59:89–91

    Article  CAS  Google Scholar 

  60. Steinbrenner H, Sies H (2013) Selenium homeostasis and antioxidant selenoproteins in brain: implications for disorders in the central nervous system Arch Biochem Biophys 536:152–157

    Article  PubMed  CAS  Google Scholar 

  61. Rederstorff M, Krol A, Lescure A (2006) Understanding the importance of selenium and selenoproteins in muscle function. Cell Mol Life Sci 63:52–59

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  62. Beck J, Ferrucci L, Sun K, et al (2007) Low serum selenium concentrations are associated with poor grip strength among older women living in the community. Biofactors 29:37–44

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  63. Anderson RA (2003) Chromium and insulin resistance. Nutr Res Rev 16:267–275

    Article  PubMed  CAS  Google Scholar 

  64. Anderson RA (1998) Effect of chromium on body composition and weight loss. Nutr Rev 56:266–270

    Article  PubMed  CAS  Google Scholar 

  65. Lau FC, Bagchi M, Sen CK, Bagchi D (2013) Nutrigenomic basis of beneficial effects of chromium(III) on obesity and diabetes. Mol Cell 52:75–86

    Article  Google Scholar 

  66. Roussel AM, Andriollo-Sanchez M, Ferry M, et al (2007) Food chromium content, dietary chromium intake and related biological variables in French free-living elderly. Br J Nutr 2:326–331

    Article  Google Scholar 

  67. Rowe JW, Khan RL (1987) Human aging: usual and successfull. Science 237:143–149

    Article  PubMed  CAS  Google Scholar 

  68. Hercberg S, Czernichow S, Galan P (2009) Tell me what your blood beta-carotene level is, I will tell you what your health risk is! The viewpoint of the SUVIMAX researchers. Ann Nutr Metab 54:310–312

    Article  PubMed  CAS  Google Scholar 

  69. Rolls BJ, Dimeo KA, Shide DJ (1995) Age-related impairments in the regulation of food intake. Am J Clin Nutr 62:923–931

    PubMed  CAS  Google Scholar 

  70. McNulty H, Pentieva K, Hoey L, et al (2012) Nutrition throughout life: folate. Int J Vitam Nutr Res 82:348–354

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ferry.

Additional information

Groupe Experts Gériatres en Nutrition (GEGN) de la Société Française de Gériatrie et Gérontologie (SFGG)

About this article

Cite this article

Ferry, M. Les micronutriments chez le sujet vieillissant. cah. année gerontol. 5, 308–317 (2013). https://doi.org/10.1007/s12612-013-0365-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12612-013-0365-3

Mots clés

Keywords

Navigation