Skip to main content
Log in

État des connaissances sur les contaminants dans le lait maternel

Current knowledge on contaminants in breast milk

  • Mise Au Point / Update
  • Published:
Revue de médecine périnatale

Résumé

Une exposition anténatale est souvent à l’origine des effets indésirables des xénobiotiques. La femme allaitante et l’enfant allaité sont une population cible à risque. Les données publiées ont donné lieu à une liste de 17 polluants de l’environnement susceptibles de se retrouver dans le lait maternel et a permis d’établir une classification du risque en cas d’allaitement maternel. Ces données sont parfois contradictoires. À ce jour, l’allaitement maternel doit être favorisé malgré un environnement pollué et le risque de contamination car il apporte en plus de sa qualité nutritionnelle unique, un effet « protecteur » sur l’enfant via ses propriétés biologiques spécifiques. En revanche, il est essentiel de conseiller la population et surtout les sujets à risque tels que les femmes enceintes et allaitantes, sur leur alimentation et leur environnement proche. Ceci devrait être complété par une politique de santé publique active visant à limiter l’émission de xénobiotiques dans l’environnement et à une formation des professionnels sur le sujet.

Abstract

Antenatal exposition could produce xenobiotic side-effects on lactating women and breastfeeding children, they are a vulnerable target about these risks in a high susceptibility window. Sparse and contradictory data are available for health professional and a list could describe 17 pollutants classified at risk during breastfeeding. Lactation must be encouraged although pollution still exists to its protecting effects on breastfed children against infections and other diseases. Still nowadays, right and well balanced public health advices are needed about nutrition with public health policies and laws to reduce contaminant pollutant productions and emissions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Références

  1. Mosca F, Gianni ML (2017) Human milk: composition and health benefits. Pediatr Med Chir 39:155

    Article  PubMed  Google Scholar 

  2. Lehmann GM, Verner MA, Luukinen B, et al (2014) Improving the risk assessment of lipophilic persistent environmental chemicals in breast milk. Crit RevToxicol 44:600–17

    CAS  Google Scholar 

  3. Landrigan PJ, Kimmel CA, Correa A, et al (2004) Children’s health and the environment: public health issues and challenges for risk assessment. Environ Health Perspect 112:257–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Salanave B, de Launay C, Boudet-Berquier J, et al (2016) Alimentation des nourrissons pendant leur première année de vie. Résultats de l’étude Epifane, 2012-2013. http://invs.santepubliquefrance.fr/Publications-et-outils/Rapports-et-syntheses/Maladies-chroniques-et-traumatismes/2016/Alimentation-des-nourrissons-pendant-leur-premiere-annee-de-vie

    Google Scholar 

  5. Étude de l’Alimentation Totale Infantile (2016) Rapport d’expertise collective. Anses, Maison Alfort p 1-96

    Google Scholar 

  6. Agrell C, ter Schure AF, Sveder J, et al (2004) Polybrominateddiphenylethers (PBDEs) at a solid waste incineration plant. Atmospheric Environment 38:5139–48

    Article  CAS  Google Scholar 

  7. Anderson HA, Wolff MS (2000) Environmental contaminants in human milk. J Expo Anal Environ Epidemiol 200:755–60

    Article  Google Scholar 

  8. Trnovec T, Jusko TA, Šovčíková E, et al (2013) Relative Effect Potency Estimates of Dioxin-like Activity for Dioxins, Furans, and Dioxin-like PCBs in Adults Based on Two Thyroid Outcomes, Environ Health Perspect 121:886–92

    Article  PubMed  PubMed Central  Google Scholar 

  9. Langer P (2010) The impacts of organochlorines and other persistent pollutants on thyroid and metabolic health. Front Neuroendocrinol 31:497–518

    Article  CAS  PubMed  Google Scholar 

  10. Adamo C, Antignac JP, Auger J, et al (2011) Expertise collective INSERM. Reproduction et Environnement. Paris: Inserm, 713 p

    Google Scholar 

  11. Fang J, Nyberg E, Bignert A, et al (2013) Temporal trends of polychlorinated dibenzo-p-dioxins and dibenzofurans and dioxin-like polychlorinated biphenyls in mothers’ milk from Sweden, 1972–2011. Environ Int 60:224–31

    Article  PubMed  Google Scholar 

  12. Wittsiepe J, Fürst P, Schrey P, et al (2007) PCDD/F and dioxinlike PCB in human blood and milk from German mothers. Chemosphere 67:S286–94

    Article  CAS  PubMed  Google Scholar 

  13. Todaka I, Hori K, Abe Y, et al (2010) Relationship between the concentrations of polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans, and polychlorinated biphenyls in maternal blood and those in breast milk Chemosphere 78:185–92

    CAS  PubMed  Google Scholar 

  14. Fernández-González R, Yebra-Pimentel I, Martínez-Carballo E, et al (2015) Critical Review about Human Exposure to Polychlorinated Dibenzo-p-Dioxins (PCDDs), Polychlorinated Dibenzofurans (PCDFs) and Polychlorinated Biphenyls (PCBs) through Foods. Crit Rev Food Sci Nutr 55:1590–617

    Article  PubMed  Google Scholar 

  15. 2000) Étude sur les dioxines et les furanes dans le lait maternel en France http://invs.santepubliquefrance.fr/publications/dioxines/index.html

  16. Lakind JS, Berlin CM, Naiman DQ, et al (2001) Infant exposure to chemicals in breast milk in the United States: what we need to learn from a breast milk monitoring program. Environ Health Perspect 109:75–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Milbrath MO, Wenger Y, Chang CW, et al (2009) Apparent halflives of dioxins, furans, and polychlorinated biphenyls as a function of age, body fat, smoking status, and breast-feeding. Environ Health Perspect 117:417–25

    Article  PubMed  Google Scholar 

  18. Focant JF, Fréry N, Bidondo ML, et al (2013) Levels of polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans and polychlorinated biphenyls in human milk from different regions of France. Sci Total Environ 452:155–62

    Article  PubMed  Google Scholar 

  19. Chovancová J, Čonka K, Kočan A, Sejáková ZS (2009) PCDD, PCDF, PCB and PBDE concentrations in breast milk of mothers residing in selected areas of Slovakia. Chemosphere 75:1236–42

    Article  Google Scholar 

  20. Li J, Zhang L, Wu Y, et al (2009) A national survey of polychlorinated dioxins, furans (PCDD/Fs) and dioxin-like polychlorinated biphenyls (dl-PCBs) in human milk in China. Chemosphere 75:1236–42

    Article  CAS  PubMed  Google Scholar 

  21. Boersma ER, Lanting CL (2000) Environmental exposure to polychlorinated biphenyls (PCBs) and dioxins. Consequences for long term neurological and cognitive development of the child lactation. Adv Exp Med Biol 478:271–87

    CAS  Google Scholar 

  22. Tai PT, Nishijo M, Anh NTN, et al (2013) Dioxin exposure in breast milk and infant neurodevelopment in Vietnam. Occup Environ Med 70:656–62

    Article  CAS  PubMed  Google Scholar 

  23. Lignell S, Aune M, Darnerud PO, et al (2016) Maternal body burdens of PCDD/Fs and PBDEs are associated with maternal serum levels of thyroid hormones in early pregnancy: a crosssectional study. Environ Health 26:15–55

    Google Scholar 

  24. Van den Berg M, Kypke K, Kotz A, et al (2017) WHO/UNEP global surveys of PCDDs, PCDFs, PCBs and DDTs in human milk and benefit-risk evaluation of breastfeeding. Arch Toxicol 91:83–96

    Article  PubMed  Google Scholar 

  25. Guéguen M, Amiard JC, Arnich N, et al (2011) Shellfish and residual chemical contaminants: hazards, monitoring, and health risk assessment along French coasts. Rev Environ ContamToxicol 213:55–111

    Google Scholar 

  26. Järup L (2003) Hazards of heavy metal contamination. Med Bull Br 68:167–82

    Article  Google Scholar 

  27. Marles RJ, Barrett ML, Low DT, et al (2011) United States pharmacopeia safety evaluation of spirulina. Crit Rev Food Sci Nutr 51:593–604

    Article  CAS  PubMed  Google Scholar 

  28. Gaxiola-Robles R, Labrada-Martagón V, Celis de la Rosa Ade J, et al (2014) Interaction between mercury (Hg), arsenic (As) and selenium (Se) affects the activity of glutathione S-transferase in breast milk; possible relationship with fish and selfish intake. Nutr Hosp 30:436–46

    PubMed  Google Scholar 

  29. Criswell R, Lenters V, Mandal S, et al (2017) Persistent Environmental Toxicants in Breast Milk and Rapid Infant Growth. Ann Nutr Metab 70:210–6

    Article  CAS  PubMed  Google Scholar 

  30. Ettinger AS, Téllez-Rojo MM, Amarasiriwardena C, et al (2006) Influence of maternal bone lead burden and calcium intake on levels of lead in breast milk over the course of lactation. Am J Epidemiol 163:48–56

    Article  PubMed  Google Scholar 

  31. D’Ilio S, Petrucci F, D’Amato M, et al (2008) Method validation for determination of arsenic, cadmium, chromium and lead in milk by means of dynamic reaction cell inductively coupled plasma mass spectrometry. Anal Chim Acta 624:59–67

    Article  PubMed  Google Scholar 

  32. Chao HH, Guo CH, Huang CB, et al (2014) Arsenic, cadmium, lead, and aluminium concentrations in human milk at early stages of lactation. Pediatr Neonatol 55:127–34

    Article  PubMed  Google Scholar 

  33. Dorea JG (2004) Mercury and lead during breast-feeding. Br J Nutr 92:21–40

    Article  CAS  PubMed  Google Scholar 

  34. Becker G, Ryan-Fogarty Y (2016) Reliance on pumped mother’s milk has an environmental impact. Children 3:14

    Article  PubMed Central  Google Scholar 

  35. Moneim IA, Shamy MY, el-Gazzar RM, et al (1999) Autoantibodies to neurofilaments (NF), glial fibrillary acidic protein (GFAP) and myelin basic protein (MBP) in workers exposed to lead. J Egypt Public Health Assoc 74:121–38

    CAS  PubMed  Google Scholar 

  36. García-Esquinas E, Pérez-Gómez B, Fernández MA, et al (2011) Mercury, lead and cadmium in human milk in relation to diet, lifestyle habits and sociodemographic variables in Madrid (Spain). Chemosphere 85:268–76

    Article  PubMed  Google Scholar 

  37. Gürbay A, Charehsaz M, Eken A (2012) Toxic metals in breast milk samples from Ankara, Turkey: assessment of lead, cadmium, nickel, and arsenic levels. Biol Trace Elem Res 149:117–22

    Article  PubMed  Google Scholar 

  38. Cernichiari E, Brewer R, Myers GJ, et al (1995) Monitoring methylmercury during pregnancy: maternal hair predicts fetal brain exposure. Neuro Toxicology 16:705–10

    CAS  Google Scholar 

  39. Al-Saleh I, Nester M, Abduljabbar M, et al (2016) Mercury (Hg) exposure and its effects on Saudi breastfed infant’s neurodevelopment. Int J Hyg Environ Health 219:129–41

    Article  CAS  PubMed  Google Scholar 

  40. Miklavčič A, Cuderman P, Mazej D, et al (2011) Biomarkers of low-level mercury exposure through fish consumption in pregnant and lactating Slovenian women. Environ Res 111: 1201–7

    Article  PubMed  Google Scholar 

  41. Drasch G, Aigner S, Roider G, et al (1998) Mercury in human colostrum and early breast milk. Its dependance on dental amalgam and other factors. J Trace Elem Med Biol 12:23–7

    Article  CAS  Google Scholar 

  42. Drexler H, Schaller KH (1998) The mercury concentration in breast milk resulting from amalgam fillings and dietary habits. Environ Res 77:124–9

    Article  CAS  PubMed  Google Scholar 

  43. Yalçin SS, Yurdakök K, Yalçin S, et al (2010) Maternal and environmental determinants of breast-milk mercury concentrations. Turk J Pediatr 52:1–9

    PubMed  Google Scholar 

  44. Needham LL, Grandjean P, Heinzow B, et al (2011). Partition of environmental chemicals between maternal and fetal blood and tissues. Environ SciTechnol 45:1121–6

    Article  CAS  Google Scholar 

  45. Li PJ, Sheng YZ, Wang QY, et al (2000) Transfer of lead via placenta and breast milk in human. Biomed Environ Sci 13:85–9

    CAS  PubMed  Google Scholar 

  46. Manton WI, Angle CR, Stanek KL, et al (2003) Release of lead from bone in pregnancy an lactation. Environ Res 92:139–51

    Article  CAS  PubMed  Google Scholar 

  47. Namihira D, Saldivar L, Pustilnik N, et al (1993) Lead in human blood and milk. J Toxicol Environ Health 38:225–32

    Article  CAS  PubMed  Google Scholar 

  48. Baum C, Shannon M (1995) Lead poisoned lactating women have insignificant lead in breast milk. J ClinToxicol 13: 540–1

    Google Scholar 

  49. Gelberg KH, Depersis R (2009) Lead exposure among target shooters. Arch Environ Occup Health. Summer 64:115–20

    Article  Google Scholar 

  50. Guidelines for the identification and management of lead exposure in pregnant and lactating women (2010) US department of Health and human services, Atlanta https://www.cdc.gov/nceh/lead/publications/leadandpregnancy2010.pdf

  51. Grandjean P, Weihe P, Needham LL, et al (1995) Relation of a seafood diet to mercury, selenium, arsenic, and polychlorinated biphenyl and other organochlorine concentrations in human milk. Environ Res 71:29–38

    Article  CAS  PubMed  Google Scholar 

  52. Sternowsky HJ, Moser B, Szadkowsky D (2002) Arsenic in breast milk during the first 3 months of lactation. Int J Hyg Environ Health 205:405–9

    Article  CAS  PubMed  Google Scholar 

  53. Réseau canadien pour la santé des femmes (2004}) L’allaitement maternel dans un environnement contaminé. http://www.cwhn.ca/fr/node/3996

  54. Fromme H, Gruber L, Seckin E, et al (2011) Phthalates and their metabolites in breast milk—results from the Bavarian Monitoring of Breast Milk (BAMBI). Environ Int 37:715–22

    Article  CAS  PubMed  Google Scholar 

  55. 2011) L’EFSA révise l’évaluation de l’exposition des consommateurs aux glycosides de stéviol. https://www.efsa.europa.eu/fr/press/news/ans110126

  56. http://www.e-lactancia.org/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Serreau.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Serreau, R., Rigourd, V. & Pommeret, B. État des connaissances sur les contaminants dans le lait maternel. Rev. med. perinat. 9, 146–156 (2017). https://doi.org/10.1007/s12611-017-0422-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12611-017-0422-z

Mots clés

Keywords

Navigation