Skip to main content
Log in

Environnement, génétique et épigénétique

Environment, genetics, and epigenetics

  • Mise au Point / Update
  • Published:
Revue de médecine périnatale

Résumé

À partir des années 1960, l’idée que la vaste majorité des maladies humaines ne sont ni le résultat d’une exposition environnementale isolée ni celui de la mutation d’un gène unique s’est imposée : le plus souvent, les effets des facteurs de risque génétiques et environnementaux se conjuguent. Quelques années plus tard, des expériences ont montré que des modifications cellulaires acquises peuvent entraîner des changements persistants de l’expression des gènes et peuvent être transmises d’une génération à l’autre : on aborde le champ de l’épigénétique. Le présent article tend à expliquer ces mécanismes, et à citer des exemples de chacun d’eux. Les polluants de l’environnement à risque incluent par exemple les polluants de l’air, les métaux lourds (plomb et mercure), les retardateurs de flamme et certains pesticides. Les effets critiques examinés sont la croissance foetale et la prématurité, le développement neurologique et cognitif, la santé respiratoire et immunologique, la croissance de l’enfant et l’obésité. Parmi les anomalies congénitales qui résultent d’une interaction gènes–environnement, les défauts de fermeture du tube neural, les fentes faciales et les cardiopathies sont fréquemment mentionnés. L’apport de la notion récente d’épigénétique est le fait que l’alimentation, l’air respiré et même les émotions pourraient influencer non seulement l’expression des gènes d’un individu, mais celle de ses enfants et de ses petits-enfants. Ainsi, la dénutrition, la suralimentation ou encore le stress sont susceptibles d’induire aux générations suivantes des pathologies aussi variées qu’obésité, diabète, allergies ou maladies cardiovasculaires. Les résultats des études citées pourraient avoir des conséquences importantes pour la connaissance des facteurs de risque, la prévention ou même le traitement de nombreuses maladies.

Abstract

Beginning in the 1960s, the idea that the vast majority of human diseases are neither the result of isolated environmental exposures nor that of the mutation of a single gene was imposed: genetic and environmental risks often are combined. A few years later, experiments have shown that acquired cell changes can lead to persistent changes in gene expression and can be transmitted from one generation to another: the field of epigenetics was born. This article attempts to explain these mechanisms and to give examples. At risk pollutants in the environment include, for example, air pollutants, heavy metals (lead and mercury), flame retardants, and certain pesticides. The critical effects examined are fetal growth and prematurity, neurological and cognitive development, respiratory and immunological health, child growth, and obesity. Among the congenital abnormalities, those that are best known as a result of a gene–environment interaction are neural tube defects, facial clefts, and heart diseases. The recent concept of epigenetics and transgenerational heredity indicates that diet, breathed air, and even emotions might influence not only the expression of an individual’s genes but that of his children and grandchildren. Thus, undernutrition, overeating, or stress is likely to induce in the next generations pathologies as varied as obesity, diabetes, allergies, or cardiovascular diseases. Results of the quoted studies could have important consequences for the knowledge of risk factors, prevention, or even therapy of many diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Références

  1. Kazma R (2010) Les interactions gène–environnement dans les études génétiques des maladies complexes. Thèse — Sciences du Vivant [q-bio]. Université Paris Sud, Paris-XI

    Google Scholar 

  2. Prochantz A, Haroche S, Heard E (2013) Épigénétique et mémoire cellulaire. Collège de France, 62 p

    Google Scholar 

  3. Vrijheid M, Casas M, Gascon M, et al (2016) Environmental pollutants and child health — a review of recent concerns. Int J Hyg Environ Health 219: 331–42

    Article  CAS  PubMed  Google Scholar 

  4. Elmaogullari S, Demirel F, Hatipoglu N (2017) Risk factors that affect metabolic health status in obese children. J Pediatr Endocrinol Metab 30: 49–55

    Article  CAS  PubMed  Google Scholar 

  5. Källén B (2014) The risk of neurodisability and other long-term outcomes for infants born following ART. Semin Fetal Neonatal Med 19: 239–44

    Article  PubMed  Google Scholar 

  6. Sivertsen A, Wilcox AJ, Skjaerven R, et al (2008) Familial risk of oral clefts by morphological type and severity: populationbased cohort study of first degree relatives. BMJ 336: 432–4

    Article  PubMed  PubMed Central  Google Scholar 

  7. Chevrier C, Perret C, Bahuau M, et al (2007) Fetal and maternal CYP2E1 genotypes and the risk of nonsyndromic oral clefts. Am J Med Genet A 143A:1382–5

    Article  CAS  PubMed  Google Scholar 

  8. Wilde J, Petersen JR, Niswander L (2014) Genetic, epigenetic, and environmental contributions to neural tube closure. Annu Rev Genet 48: 583–611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dixon MJ, Marazita ML, Beaty TH, Murray JC (2011) Cleft lip and palate: understanding genetic and environmental influences. Nat Rev Genet 12: 167–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Harris MJ, Juriloff DM (2010) An update to the list of mouse mutants with neural tube closure defects and advances toward a complete genetic perspective of neural tube closure. Birth Defects Res A Clin Mol Teratol 88: 653–69

    Article  CAS  PubMed  Google Scholar 

  11. Obican SG, Finnell RH, Mills JL, et al (2010) Folic acid in early pregnancy: a public health success story. FASEB J 24: 4167–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wallis D, Ballard JL, Shaw GM, et al (2009) Folate-related birth defects: embryonic consequences of abnormal folate transport and metabolism. In: Folate in health and disease. Taylor and Francis Editor, New York, 2nd edition, pp 156–78

    Google Scholar 

  13. Lupo PJ, Canfield MA, Chapa C, et al (2012) Diabetes and obesityrelated genes and the risk of neural tube defects in the national birth defects prevention study. Am J Epidemiol 176: 1101–9

    Article  PubMed  PubMed Central  Google Scholar 

  14. Tai CG, Graff RE, Liu J, et al (2015) Detecting gene–environment interactions in human birth defects: study designs and statistical methods. Birth Defects Res A Clin Mol Teratol 103: 692–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cresci M, Foffa I, Ait-Ali L, et al (2011) Maternal and paternal environmental risk factors, metabolizing GSTM1 and GSTT1 polymorphisms, and congenital heart disease. Am J Cardiol 108: 1625–31

    Article  CAS  PubMed  Google Scholar 

  16. Tang X, Nick TG, Cleves MA, et al (2014) Maternal obesity and tobacco use modify the impact of genetic variants on the occurrence of conotruncal heart defects. PLoS One 9:e108903

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kahn HS, Graff M, Stein AD, Lumey LH (2009) A fingerprint marker from early gestation associated with diabetes in middle age: the Dutch hunger winter families study. Int J Epidemiol 38: 101–9

    Article  PubMed  Google Scholar 

  18. Andersson NW, Hansen MV, Larsen AD, et al (2016) Prenatal maternal stress and atopic diseases in the child: a systematic review of observational human studies. Allergy 71: 15–26

    Article  CAS  PubMed  Google Scholar 

  19. Donkin I, Versteyhe S, Ingerslev LR, et al (2016) Obesity and bariatric surgery drive epigenetic variation of spermatozoa in humans. Cell Metab 23: 369–78

    Article  CAS  PubMed  Google Scholar 

  20. Dias BG, Ressler KJ (2014) Parental olfactory experience influences behavior and neural structure in subsequent generations. Nat Neurosci 17: 89–96

    Article  CAS  PubMed  Google Scholar 

  21. Pembrey ME, Bygren LO, Kaati G, et al (2006) Sex-specific, male-line transgenerational responses in humans. Eur J Hum Genet 14: 159–66

    Article  PubMed  Google Scholar 

  22. Gkountela S, Zhang KX, Shafiq TA, et al (2015) DNA demethylation dynamics in the human prenatal germline. Cell 161: 1425–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang J, Wu Z, Li D, et al (2012) Nutrition, epigenetics, and metabolic syndrome. Antioxid Redox Signal 17: 282–301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sen A, Heredia N, Senut MC, et al (2015) Multigenerational epigenetic inheritance in humans: DNA methylation changes associated with maternal exposure to lead can be transmitted to the grandchildren. Sci Rep 5: 144–66

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Gnansia.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gnansia, E. Environnement, génétique et épigénétique. Rev. med. perinat. 9, 66–72 (2017). https://doi.org/10.1007/s12611-017-0413-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12611-017-0413-4

Mots clés

Keywords

Navigation