Skip to main content
Log in

Analyse chromosomique sur puce à ADN (CGH array) : principe et application en diagnostic prénatal

Chromosomal microarray analysis (array CGH): principle and application in prenatal diagnosis

  • Article Original / Original Article
  • Published:
Revue de médecine périnatale

Résumé

La CGH array est une nouvelle méthode d’exploration des chromosomes automatisable qui s’affranchit des cultures cellulaires et a un pouvoir de résolution de 10 à 1000 fois supérieur à celui du caryotype. En postnatal, l’étude par CGH array des patients présentant une déficience intellectuelle et/ou des malformations congénitales (DI et/ou MC) a conduit à la mise en évidence d’environ 10 à 15 % d’anomalies chromosomiques non visibles sur le caryotype. Ainsi, la CGH array est devenue aujourd’hui l’examen de première intention pour l’analyse génomique de ces patients.

L’application de la CGH array en prénatal est plus délicate du fait de la détection d’anomalies chromosomiques dont l’impact clinique est difficile à prédire. Cependant, les progrès dans la connaissance du génome et le développement d’outils (puces à ADN) adaptés permettront d’envisager dans l’avenir l’application de cette technique comme examen de première intention pour l’étude des chromosomes en prénatal.

Abstract

Array CGH is a new automated exploration method that overcomes cell cultures, and his resolution power is 10 to 1000 times higher than the karyotype one’s. In postnatal diagnosis, the study by array CGH of patients with intellectual disabilities and/or congenital malformations led to the identification of about 10% to 15% of chromosomal anomalies that are not visible on the karyotype. Thus, array CGH has become the first-line test for genomic analysis of these patients. The application of array CGH in prenatal diagnosis is more difficult because of the detection of chromosomal anomalies whose clinical impact is difficult to predict. However, advances in knowledge of the genome and the development of appropriate tools (DNA chips) will allow to consider, in the future, the application of this technique as first-line test for the study of chromosomes in prenatal diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Références

  1. Miller DT, Adam MP, Aradhya S, et al (2010) Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. Am J Hum Genet 86:749–764

    Article  PubMed  CAS  Google Scholar 

  2. Redon R, Ishikawa S, Fitch KR, et al (2006) Global variation in copy number in the human genome. Nature 444:444–454

    Article  PubMed  CAS  Google Scholar 

  3. Neill NJ, Ballif BC, Lamb AN, et al (2011) Recurrence, submicroscopic complexity, and potential clinical relevance of copy gains detected by array CGH that are shown to be unbalanced insertions by FISH. Genome Res 21:535–454

    Article  PubMed  CAS  Google Scholar 

  4. Kaminski EB, Kaul V, Paschall J, et al (2011) An evidence based-approach to establish the functional and clinical significance of copy number variants in intellectual and developmental disabilities. Genet Med 13:777–784

    Article  Google Scholar 

  5. Cooper GM, Coe BP, Girirajan S, et al (2011) A copy number variation morbidity map of developmental delay. Nat Genet 43:838–846

    Article  PubMed  CAS  Google Scholar 

  6. Weiss LA, Shen Y, Korn JM, et al (2008) Association between microdeletion and microduplication at 16p11.2 and autism. N Engl J Med 358:667–675

    Article  PubMed  CAS  Google Scholar 

  7. Conrad DF, Pinto D, Redon R, et al (2010) Origins and functional impact of copy number variation in the human genome. Nature 464:704–712

    Article  PubMed  CAS  Google Scholar 

  8. Lamb AN (2011) Laboratory aspects of prenatal microarray analysis. Clin Lab Med 31:615–30

    Article  PubMed  Google Scholar 

  9. Brady PD, Devriendt K, Deprest J, et al (2012) Array-based approaches in prenatal diagnosis. Methods Mol Biol 838:151–171

    Article  PubMed  Google Scholar 

  10. Shaffer LG, Dabell MP, Rosenfeld JA, et al (2012) Referral patterns for microarray testing in prenatal diagnosis. Prenat Diagn. 32:344–350

    Article  PubMed  Google Scholar 

  11. Breman A, Pursley AN, Hixson P, et al (2012) Prenatal chromosomal microarray analysis in a diagnostic laboratory; experience with >1000 cases and review of the literature. Prenat Diagn 32:351–361

    Article  PubMed  CAS  Google Scholar 

  12. Lee CN, Lin SY, Lin CH, et al (2012) Clinical utility of array comparative genomic hybridisation for prenatal diagnosis: a cohort study of 3171 pregnancies. BJOG. Feb 7 [Epub ahead of print]

  13. Park JH, Woo JH, Shim SH, et al (2010) Application of a target array comparative genomic hybridization to prenatal diagnosis. BMC Med Genet 24:11–102

    Google Scholar 

  14. Fiorentino F, Caiazzo F, Napolitano S, et al (2011) Introducing array comparative genomic hybridization into routine prenatal diagnosis practice: a prospective study on over 1000 consecutive clinical cases. Prenat Diagn 31:1270–1282

    Article  PubMed  Google Scholar 

  15. Maya I, Davidov B, Gershovitz L, et al (2010) Diagnostic utility of array-based comparative genomic hybridization (aCGH) in a prenatal setting. Prenat Diagn 30:1131–1137

    Article  PubMed  Google Scholar 

  16. Coppinger J, Alliman S, Lamb AN, et al (2009) Whole-genome microarray analysis in prenatal specimens identifies clinically significant chromosome alterations without increase in results of unclear significance compared to targeted microarray. Prenat Diagn 29:1156–1166

    Article  PubMed  Google Scholar 

  17. Kleeman L, Bianchi DW, Shaffer LG, et al (2009) Use of array comparative genomic hybridization for prenatal diagnosis of fetuses with sonographic anomalies and normal metaphase karyotype. Prenat Diagn 29:1213–1217

    Article  PubMed  Google Scholar 

  18. Shaffer LG, Coppinger J, Alliman S, et al (2008) Comparison of microarray-based detection rates for cytogenetic abnormalities in prenatal and neonatal specimens. Prenat Diagn 28:789–795

    Article  PubMed  Google Scholar 

  19. Van den Veyver IB, Patel A, Shaw CA, et al (2009) Clinical use of array comparative genomic hybridization (aCGH) for prenatal diagnosis in 300 cases. Prenat Diagn 29:29–39

    Article  PubMed  Google Scholar 

  20. Sahoo T, Cheung SW, Ward P, et al (2006) Prenatal diagnosis of chromosomal abnormalities using array-based comparative genomic hybridization. Genet Med 8:719–712

    Article  PubMed  CAS  Google Scholar 

  21. Schaaf CP, Wiszniewska J, Beaudet AL (2011) Copy number and SNP arrays in clinical diagnostics. Annu Rev Genomics Hum Genet 22:25–51

    Article  Google Scholar 

  22. Giardino D, Corti C, Ballarati L (2009) De novo balanced chromosome rearrangements in prenatal diagnosis. Prenat Diagn 29:257–265

    Article  PubMed  Google Scholar 

  23. Warburton D (1991) De novo balanced chromosome rearrangements and extra marker chromosomes identified at prenatal diagnosis: clinical significance and distribution of breakpoints. Am J Hum Genet 49:995–1013

    PubMed  CAS  Google Scholar 

  24. De Gregori M, Ciccone R, Magini P, et al (2007) Cryptic deletions are a common finding in “balanced” reciprocal and complex chromosome rearrangements: a study of 59 patients. J Med Genet. 44:750–762

    Article  PubMed  Google Scholar 

  25. Baptista J, Mercer C, Prigmore E, et al (2008) Breakpoint mapping and array CGH in translocations: comparison of a phenotypically normal and an abnormal cohort. Am J Hum Genet 82:927–936

    Article  PubMed  CAS  Google Scholar 

  26. Le Caignec C, Boceno M, Saugier-Veber P, et al (2005) Detection of genomic imbalances by array based comparative genomic hybridisation in fetuses with multiple malformations. J Med Genet 42:121–128

    Article  PubMed  Google Scholar 

  27. Vialard F, Molina Gomes D, Leroy B, et al (2009) Array comparative genomic hybridization in prenatal diagnosis: another experience. Fetal Diagn Ther 25:277–284

    Article  PubMed  CAS  Google Scholar 

  28. Tyreman M, Abbott KM, Willatt, et al (2009) High resolution array analysis: diagnosing pregnancies with abnormal ultrasound findings. J Med Genet 46:531–541

    Article  PubMed  CAS  Google Scholar 

  29. Faas BH, van der Burgt I, Kooper AJ, et al (2010) Identification of clinically significant, submicroscopic chromosome alterations and UPD in fetuses with ultrasound anomalies using genomewide 250k SNP array analysis. J Med Genet 47:586–594

    Article  PubMed  CAS  Google Scholar 

  30. Valduga M, Philippe C, Bach Segura P, et al (2010) A retrospective study by oligonucleotide array-CGH analysis in 50 fetuses with multiple malformations. Prenat Diagn 30:333–341

    PubMed  CAS  Google Scholar 

  31. D’Amours G, Kibar Z, Mathonnet G, et al (2012) Whole-genome array CGH identifies pathogenic copy number variations in fetuses with major malformations and a normal karyotype. Clin Genet 81:128–141

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Romana.

About this article

Cite this article

Malan, V., Romana, S. Analyse chromosomique sur puce à ADN (CGH array) : principe et application en diagnostic prénatal. Rev. med. perinat. 4, 67–73 (2012). https://doi.org/10.1007/s12611-012-0181-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12611-012-0181-9

Mots clés

Keywords

Navigation