Skip to main content
Log in

Diagnostic prénatal non invasif : de la détermination du sexe fœtal à la détection d’aneuploïdie

Non-invasive prenatal diagnosis: from fetal sex determination to aneuploidy detection

  • Mise au Point / Update
  • Published:
Revue de médecine périnatale

Résumé

Le diagnostic prénatal permet de détecter des pathologies chez le fœtus in utero. Il requiert très souvent un prélèvement invasif, dont la principale complication est la survenue de fausses couches dans 0,5 à 4 % des cas. La découverte, à la fin des années 1990, d’ADN fœtal circulant libre dans le plasma maternel a permis le développement de techniques de diagnostic prénatal non invasif. La détermination du sexe fœtal et le génotypage RHD (rhésus (D)) font à présent partie des pratiques courantes et permettent de diminuer le nombre de prélèvements invasifs et le nombre de traitements inappropriés. Alors que le diagnostic non invasif des maladies monogéniques est encore à la phase de mise au point, les progrès technologiques récents, notamment concernant le séquençage haut débit, ont rendu possible le diagnostic de trisomie 21 à partir du sang maternel, dont la place reste encore à définir dans la prise en charge des patientes.

Abstract

Prenatal diagnosis aims at detecting in utero fetal diseases. It often requires an invasive fetal sampling, whose main complication is the occurrence of miscarriages in 0.5 to 4% of cases. The discovery of free fetal circulating DNA in maternal plasma in the late 1990s has enabled the development of techniques for non-invasive prenatal diagnosis. Fetal sex determination and RHD genotyping are now part of current practices and help to reduce the number of invasive samplings and inappropriate treatments. While the noninvasive diagnosis of monogenic diseases is still at the stage of development, recent technological advances — including next-generation sequencing—have made possible the diagnosis of trisomy 21 from maternal blood, whose contribution remains yet to be defined in patients’ management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Références

  1. Mujezinovic F, Alfirevic Z (2007) Procedure-related complications of amniocentesis and chorionic villous sampling: a systematic review. Obstet Gynecol 110:687–694

    Article  PubMed  Google Scholar 

  2. Bianchi DW, Williams JM, Sullivan LM, et al (1997) PCR quantitation of fetal cells in maternal blood in normal and aneuploid pregnancies. Am J Hum Genet 61:822–829

    Article  PubMed  CAS  Google Scholar 

  3. Chen H, Griffin DK, Jestice K, et al (1998) Evaluating the culture of fetal erythroblasts from maternal blood for non-invasive prenatal diagnosis. Prenat Diagn 18:883–892

    Article  PubMed  CAS  Google Scholar 

  4. Bianchi DW, Simpson JL, Jackson LG, et al (2002) Fetal gender and aneuploidy detection using fetal cells in maternal blood: analysis of NIFTY I data. National Institute of Child Health and Development Fetal Cell Isolation Study. Prenat Diagn 22:609–615

    Article  PubMed  CAS  Google Scholar 

  5. Bianchi DW, Zickwolf GK, Weil GJ, et al (1996) Male fetal progenitor cells persist in maternal blood for as long as 27 years postpartum. Proc Natl Acad Sci USA 93:705–708

    Article  PubMed  CAS  Google Scholar 

  6. Lo YM, Corbetta N, Chamberlain PF, et al (1997) Presence of fetal DNA in maternal plasma and serum. Lancet 350:485–487

    Article  PubMed  CAS  Google Scholar 

  7. Alberry M, Maddocks D, Jones M, et al (2007) Free fetal DNA in maternal plasma in anembryonic pregnancies: confirmation that the origin is the trophoblast. Prenat Diagn 27:415–418

    Article  PubMed  CAS  Google Scholar 

  8. Flori E, Doray B, Gautier E, et al (2004) Circulating cell-free fetal DNA in maternal serum appears to originate from cyto- and syncytio-trophoblastic cells. Case report. Hum Reprod 19:723–724

    Article  CAS  Google Scholar 

  9. Chan KC, Zhang J, Hui AB, et al (2004) Size distributions of maternal and fetal DNA in maternal plasma. Clin Chem 50:88–92

    Article  PubMed  CAS  Google Scholar 

  10. Birch L, English CA, O’Donoghue K, et al (2005) Accurate and robust quantification of circulating fetal and total DNA in maternal plasma from 5 to 41 weeks of gestation. Clin Chem 51:312–320

    Article  PubMed  CAS  Google Scholar 

  11. Benachi A, Steffann J, Gautier E, et al (2003) Fetal DNA in maternal serum: does it persist after pregnancy? Hum Genet 113:76–79

    PubMed  CAS  Google Scholar 

  12. Lo YM, Zhang J, Leung TN, et al (1999) Rapid clearance of fetal DNA from maternal plasma. Am J Hum Genet 64:218–224

    Article  PubMed  CAS  Google Scholar 

  13. Lo YM, Tein MS, Lau TK, et al (1998) Quantitative analysis of fetal DNA in maternal plasma and serum: implications for noninvasive prenatal diagnosis. Am J Hum Genet 62:768–775

    Article  PubMed  CAS  Google Scholar 

  14. Costa JM, Benachi A, Gautier E, et al (2001) First-trimester fetal sex determination in maternal serum using real-time PCR. Prenat Diagn 21:1070–1074

    Article  PubMed  CAS  Google Scholar 

  15. Avent ND, Chitty LS (2006) Non-invasive diagnosis of fetal sex; utilisation of free fetal DNA in maternal plasma and ultrasound. Prenat Diagn 26:598–603

    Article  PubMed  CAS  Google Scholar 

  16. Wright CF, Burton H (2009) The use of cell-free fetal nucleic acids in maternal blood for non-invasive prenatal diagnosis. Hum Reprod Update 15:139–151

    Article  PubMed  CAS  Google Scholar 

  17. Costa JM, Benachi A, Gautier E (2002) New strategy for prenatal diagnosis of X-linked disorders. N Engl J Med 346:1502

    Article  PubMed  Google Scholar 

  18. Rijnders RJ, van der Schoot CE, Bossers B, et al (2001) Fetal sex determination from maternal plasma in pregnancies at risk for congenital adrenal hyperplasia. Obstet Gynecol 98:374–378

    Article  PubMed  CAS  Google Scholar 

  19. Nimkarn S, New MI (2010) Congenital adrenal hyperplasia due to 21-hydroxylase deficiency: a paradigm for prenatal diagnosis and treatment. Ann NY Acad Sci 1192:5–11

    Article  PubMed  CAS  Google Scholar 

  20. Gautier E, Benachi A, Giovangrandi Y, et al (2005) Fetal RhD genotyping by maternal serum analysis: a two-year experience. Am J Obstet Gynecol 192:666–669

    Article  PubMed  CAS  Google Scholar 

  21. Lo YM, Hjelm NM, Fidler C, et al (1998) Prenatal diagnosis of fetal RhD status by molecular analysis of maternal plasma. N Engl J Med 339:1734–1738

    Article  PubMed  CAS  Google Scholar 

  22. CNGOF (2006) Recommendations for clinical practice. Prevention in maternofetal Rh immunization (December 2005). Gynecol Obstet Fertil 34:360–365

    Article  Google Scholar 

  23. Saito H, Sekizawa A, Morimoto T, et al (2000) Prenatal DNA diagnosis of a single-gene disorder from maternal plasma. Lancet 356:1170

    Article  PubMed  CAS  Google Scholar 

  24. Chitty LS, Griffin DR, Meaney C, et al (2011) New aids for the non-invasive prenatal diagnosis of achondroplasia: dysmorphic features, charts of fetal size and molecular confirmation using cell-free fetal DNA in maternal plasma. Ultrasound Obstet Gynecol 37:283–289

    Article  PubMed  CAS  Google Scholar 

  25. Gonzalez-Gonzalez MC, Trujillo MJ, Rodriguez de Alba M, et al (2003) Huntington disease-unaffected fetus diagnosed from maternal plasma using QF-PCR. Prenat Diagn 23:232–234

    Article  PubMed  CAS  Google Scholar 

  26. Amicucci P, Gennarelli M, Novelli G, et al (2000) Prenatal diagnosis of myotonic dystrophy using fetal DNA obtained from maternal plasma. Clin Chem 46:301–302

    PubMed  CAS  Google Scholar 

  27. Gonzalez-Gonzalez MC, Garcia-Hoyos M, Trujillo MJ, et al (2002) Prenatal detection of a cystic fibrosis mutation in fetal DNA from maternal plasma. Prenat Diagn 22:946–948

    Article  PubMed  CAS  Google Scholar 

  28. Chiu RW, Lau TK, Leung TN, et al (2002) Prenatal exclusion of beta thalassaemia major by examination of maternal plasma. Lancet 360:998–1000

    Article  PubMed  Google Scholar 

  29. Papageorgiou EA, Karagrigoriou A, Tsaliki E, et al (2011) Fetalspecific DNA methylation ratio permits noninvasive prenatal diagnosis of trisomy 21. Nat Med 17:510–513

    Article  PubMed  CAS  Google Scholar 

  30. Lo YM, Tsui NB, Chiu RW, et al (2007) Plasma placental RNA allelic ratio permits noninvasive prenatal chromosomal aneuploidy detection. Nat Med 13:218–223

    Article  PubMed  CAS  Google Scholar 

  31. Lo YM, Lun FM, Chan KC, et al (2007) Digital PCR for the molecular detection of fetal chromosomal aneuploidy. Proc Natl Acad Sci USA 104:13116–13121

    Article  PubMed  CAS  Google Scholar 

  32. Chiu RW, Chan KC, Gao Y, et al (2008) Noninvasive prenatal diagnosis of fetal chromosomal aneuploidy by massively parallel genomic sequencing of DNA in maternal plasma. Proc Natl Acad Sci USA 105:20458–20463

    Article  PubMed  CAS  Google Scholar 

  33. Chiu RW, Sun H, Akolekar R, et al (2010) Maternal plasma DNA analysis with massively parallel sequencing by ligation for noninvasive prenatal diagnosis of trisomy 21. Clin Chem 56:459–463

    Article  PubMed  CAS  Google Scholar 

  34. Fan HC, Blumenfeld YJ, Chitkara U, et al (2008) Noninvasive diagnosis of fetal aneuploidy by shotgun sequencing DNA from maternal blood. Proc Natl Acad Sci USA 105:16266–16271

    Article  PubMed  CAS  Google Scholar 

  35. Chiu RW, Akolekar R, Zheng YW, et al (2011) Noninvasive prenatal assessment of trisomy 21 by multiplexed maternal plasma DNA sequencing: large scale validity study. BMJ 342:c7401

    Article  PubMed  Google Scholar 

  36. Ehrich M, Deciu C, Zwiefelhofer T, et al (2011) Noninvasive detection of fetal trisomy 21 by sequencing of DNA in maternal blood: a study in a clinical setting. Am J Obstet Gynecol 204:205e1–205e11

    Article  Google Scholar 

  37. Palomaki GE, Kloza EM, Lambert-Messerlian GM, et al (2012) DNA sequencing of maternal plasma to detect Down syndrome: an international clinical validation study. Genet Med 13:913–920

    Article  Google Scholar 

  38. Benn P, Borrell A, Cuckle H, et al (2012) Prenatal detection of down syndrome using massively parallel sequencing (MPS): a rapid response statement from a committee on behalf of the Board of the International Society for Prenatal Diagnosis, 24 October 2011. Prenat Diagn:1–2

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Schluth-Bolard.

About this article

Cite this article

Schluth-Bolard, C., Labalme, A. & Sanlaville, D. Diagnostic prénatal non invasif : de la détermination du sexe fœtal à la détection d’aneuploïdie. Rev. med. perinat. 4, 74–79 (2012). https://doi.org/10.1007/s12611-012-0179-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12611-012-0179-3

Mots clés

Keywords

Navigation