Skip to main content

Advertisement

Log in

Panel Testing for Hereditary Breast Cancer: More or Less?

  • Breast Cancer Genetics (BK Arun, Section Editor)
  • Published:
Current Breast Cancer Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Panel testing is increasingly being offered to patients. Currently, women may be offered a panel of up to 80 genes. Oncologists are tasked with understanding the indications for this testing as well as the potential implications. In this review, we outline which patients should undergo genetic testing for hereditary breast cancer, when this testing should be performed, and which genes should be tested for.

Recent Findings

Our understanding of hereditary breast cancer has drastically changed with the advent of next generation sequencing (NGS), and many additional genes have been associated with increased breast cancer risk. Some have advocated for genetic testing of all women with breast cancer.

Summary

Routine genetic testing for all women with breast cancer is not warranted. Women with a phenotype associated with hereditary breast cancer, with a family history of cancer, or for whom a positive genetic test would change management should be offered genetic testing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Metzker ML. Sequencing technologies-the next generation. Nat Rev Genet. 2010;11(1):31–46.

    Article  CAS  PubMed  Google Scholar 

  2. Supreme Court of the United States syllabus. Association for Molecular Pathology et al. v. Myriad Genetics, Inc., et al. certiorari to the United States Court of Appeals for the Federal Circuit. Rev Derecho Genoma Hum. 2013 (38):217–9.

  3. Tung N, Lin NU, Kidd J, Allen BA, Singh N, Wenstrup RJ, et al. Garber JE Frequency of germline mutations in 25 cancer susceptibility genes in a sequential series of patients with breast cancer. J Clin Oncol. 2016;34(13):1460–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. • Kurian AW, Ward KC, Howlader N, Deapen D, Hamilton AS, Mariotto A, et al. Genetic testing and results in a population-based cohort of breast cancer patients and ovarian cancer patients. J Clin Oncol. 2019;37(15):1305–15 An important paper which identified important gaps and disparities in testing for hereditary breast and ovarian cancer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. • Beitsch PD, Whitworth PW, Hughes K, Patel R, Rosen B, Compagnoni G, et al. Underdiagnosis of Hereditary breast cancer: are genetic testing guidelines a tool or an obstacle? J Clin Oncol. 2019;37(6):453–60 An important paper which demonstrates that guidelines do identifiy women with BRCA mutations, but expanding testing guidelines may reach more mutation carriers.

    Article  PubMed  Google Scholar 

  6. Couch FJ, Shimelis H, Hu C, Hart SN, Polley EC, Na J, et al. Associations between cancer predisposition testing panel genes and breast cancer. JAMA Oncol. 2017;3(9):1190–6.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Suszynska M, Klonowska K, Jasinska AJ, Kozlowski P. Large-scale meta-analysis of mutations identified in panels of breast/ovarian cancer-related genes-providing evidence of cancer predisposition genes. Gynecol Oncol. 2019;153(2):452–62.

    Article  CAS  PubMed  Google Scholar 

  8. • Buys SS, Sandbach JF, Gammon A, Patel G, Kidd J, Brown KL, et al. A study of over 35,000 women with breast cancer tested with a 25-gene panel of hereditary cancer genes. Cancer. 2017;123(10):1721–30 An important paper which demonstrates featues most consistent with BRCA related cancers.

    Article  CAS  PubMed  Google Scholar 

  9. O'Leary E, Iacoboni D, Holle J, Michalski ST, Esplin ED, Yang S. Ouyang K Expanded gene panel use for women with breast cancer: identification and intervention beyond breast cancer risk. Ann Surg Oncol. 2017;24(10):3060–6.

    Article  PubMed  PubMed Central  Google Scholar 

  10. •• Force USPST, Owens DK, Davidson KW, Krist AH, Barry MJ, Cabana M, et al. Risk assessment, genetic counseling, and genetic testing for BRCA-related cancer: US Preventive Services Task Force recommendation statement. JAMA. 2019;322(7):652–65 Very important and up to date guidelines for genetic testing.

    Article  Google Scholar 

  11. Lu KH, Wood ME, Daniels M, Burke C, Ford J, Kauff ND, et al. American Society of Clinical Oncology Expert statement: collection and use of a cancer family history for oncology providers. J Clin Oncol. 2014;32(8):833–40.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Lancaster JM, Powell CB, Chen LM, Richardson DL, Committee SGOCP. Society of Gynecologic Oncology statement on risk assessment for inherited gynecologic cancer predispositions. Gynecol Oncol. 2015;136(1):3–7.

    Article  PubMed  Google Scholar 

  13. Daly MB, Pilarski R, Berry M, Buys SS, Farmer M, Friedman S, et al. NCCN guidelines insights: genetic/familial high-risk assessment: breast and ovarian, version 2.2017. J Natl Compr Cancer Netw. 2017;15(1):9–20.

    Article  CAS  Google Scholar 

  14. Robson ME, Bradbury AR, Arun B, Domchek SM, Ford JM, Hampel HL, et al. Lindor NM American Society of Clinical Oncology policy statement update: genetic and genomic testing for cancer susceptibility. J Clin Oncol. 2015;33(31):3660–7.

    Article  CAS  PubMed  Google Scholar 

  15. Hampel H, Bennett RL, Buchanan A, Pearlman R, Wiesner GL, Guideline Development Group ACoMG, et al. A practice guideline from the American College of Medical Genetics and Genomics and the National Society of Genetic Counselors: referral indications for cancer predisposition assessment. Genet Med. 2015;17(1):70–87.

    Article  PubMed  Google Scholar 

  16. Espenschied CR, LaDuca H, Li S, McFarland R, Gau CL, Hampel H. Multigene panel testing provides a new perspective on Lynch syndrome. J Clin Oncol. 2017;35(22):2568–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Genetic/Familial High-Risk Assessment (2019): Breast O, and Pancreatic. In: NCCN Clin, Pract. Guidel. Oncol. https://www.nccn.org/professionals/physician_gls/pdf/genetics_bop.pdf Accessed 12.6.2019.

  18. Cropper C, Woodson A, Arun B, Barcenas C, Litton J, Noblin S, et al. Daniels M Evaluating the NCCN clinical criteria for recommending BRCA1 and BRCA2 genetic testing in patients with breast cancer. J Natl Compr Cancer Netw. 2017;15(6):797–803.

    Article  CAS  Google Scholar 

  19. Gabai-Kapara E, Lahad A, Kaufman B, Friedman E, Segev S, Renbaum P, et al. Levy-Lahad E Population-based screening for breast and ovarian cancer risk due to BRCA1 and BRCA2. Proc Natl Acad Sci U S A. 2014;111(39):14205–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ahmed M, Rahman N. ATM and breast cancer susceptibility. Oncogene. 2006;25(43):5906–11.

    Article  CAS  PubMed  Google Scholar 

  21. Swift M, Morrell D, Massey RB, Chase CL. Incidence of cancer in 161 families affected by ataxia-telangiectasia. N Engl J Med. 1991;325(26):1831–6.

    Article  CAS  PubMed  Google Scholar 

  22. Weischer M, Bojesen SE, Ellervik C, Tybjaerg-Hansen A, Nordestgaard BG. CHEK2*1100delC genotyping for clinical assessment of breast cancer risk: meta-analyses of 26,000 patient cases and 27,000 controls. J Clin Oncol. 2008;26(4):542–8.

    Article  PubMed  Google Scholar 

  23. Consortium CBCC-C. CHEK2*1100delC and susceptibility to breast cancer: a collaborative analysis involving 10,860 breast cancer cases and 9,065 controls from 10 studies. Am J Hum Genet. 2004;74(6):1175–82.

    Article  Google Scholar 

  24. Jerzak KJ, Mancuso T, Eisen A. Ataxia-telangiectasia gene (ATM) mutation heterozygosity in breast cancer: a narrative review. Curr Oncol. 2018;25(2):e176–e80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Southey MC, Goldgar DE, Winqvist R, Pylkas K, Couch F, Tischkowitz M, et al. PALB2, CHEK2 and ATM rare variants and cancer risk: data from COGS. J Med Genet. 2016;53(12):800–11.

    Article  CAS  PubMed  Google Scholar 

  26. Schmidt MK, Hogervorst F, van Hien R, Cornelissen S, Broeks A, Adank MA, et al. Age- and tumor subtype-specific breast cancer risk estimates for CHEK2*1100delC carriers. J Clin Oncol. 2016;34(23):2750–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Schutte M, Seal S, Barfoot R, Meijers-Heijboer H, Wasielewski M, Evans DG, et al. Variants in CHEK2 other than 1100delC do not make a major contribution to breast cancer susceptibility. Am J Hum Genet. 2003;72(4):1023–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Win AK, Dowty JG, Cleary SP, Kim H, Buchanan DD, Young JP, et al. Risk of colorectal cancer for carriers of mutations in MUTYH, with and without a family history of cancer. Gastroenterology. 2014;146(5):1208–11 e1 5.

    Article  CAS  PubMed  Google Scholar 

  29. Jenkins MA, Croitoru ME, Monga N, Cleary SP, Cotterchio M, Hopper JL, et al. Risk of colorectal cancer in monoallelic and biallelic carriers of MYH mutations: a population-based case-family study. Cancer Epidemiol Biomark Prev. 2006;15(2):312–4.

    Article  CAS  Google Scholar 

  30. Manahan ER, Kuerer HM, Sebastian M, Hughes KS, Boughey JC, Euhus DM, et al. Taylor WA Consensus guidelines on genetictesting for hereditary breast cancer from the American Society of Breast Surgeons. Ann Surg Oncol. 2019;26(10):3025–31.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Wood ME, Kadlubek P, Pham TH, Wollins DS, Lu KH, Weitzel JN, et al. Quality of cancer family history and referral for genetic counseling and testing among oncology practices: a pilot test of quality measures as part of the American Society of Clinical Oncology Quality Oncology Practice Initiative. J Clin Oncol. 2014;32(8):824–9.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kurian AW, Li Y, Hamilton AS, Ward KC, Hawley ST, Morrow M, et al. Gaps in incorporating germline genetic testing into treatment decision-making for early-stage breast cancer. J Clin Oncol. 2017;35(20):2232–9.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kurian AW, Griffith KA, Hamilton AS, Ward KC, Morrow M, Katz SJ. Jagsi R Genetic testing and counseling among patients with newly diagnosed breast cancer. JAMA. 2017;317(5):531–4.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Childers CP, Childers KK, Maggard-Gibbons M, Macinko J. National estimates of genetic testing in women with a history of breast or ovarian cancer. J Clin Oncol. 2017;35(34):3800–6.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Carbine NE, Lostumbo L, Wallace J, Ko H. Risk-reducing mastectomy for the prevention of primary breast cancer. Cochrane Database Syst Rev. 2018;4:CD002748.

    PubMed  Google Scholar 

  36. Ingham SL, Sperrin M, Baildam A, Ross GL, Clayton R, Lalloo F, et al. Evans DG Risk-reducing surgery increases survival in BRCA1/2 mutation carriers unaffected at time of family referral. Breast Cancer Res Treat. 2013;142(3):611–8.

    Article  CAS  PubMed  Google Scholar 

  37. Padamsee TJ, Wills CE, Yee LD, Paskett ED. Decision making for breast cancer prevention among women at elevated risk. Breast Cancer Res. 2017;19(1):34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Chiba A, Hoskin TL, Hallberg EJ, Cogswell JA, Heins CN, Couch FJ. Boughey JC Impact that timing of genetic mutation diagnosis has on surgical decision making and outcome for BRCA1/BRCA2 mutation carriers with breast cancer. Ann Surg Oncol. 2016;23(10):3232–8.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Litton JK, Rugo HS, Ettl J, Hurvitz SA, Goncalves A, Lee KH, et al. Talazoparib in patients with advanced breast cancer and a germline BRCA mutation. N Engl J Med. 2018;379(8):753–63.

    Article  CAS  PubMed  Google Scholar 

  40. Robson M, Im SA, Senkus E, Xu B, Domchek SM, Masuda N, et al. Conte P Olaparib for metastatic breast cancer in patients with a germline BRCA mutation. N Engl J Med. 2017;377(6):523–33.

    Article  CAS  PubMed  Google Scholar 

  41. Mylavarapu S, Das A, Roy M. Role of BRCA mutations in the modulation of response to platinum therapy. Front Oncol. 2018;8(16):16.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Heymann S, Delaloge S, Rahal A, Caron O, Frebourg T, Barreau L, et al. Radio-induced malignancies after breast cancer postoperative radiotherapy in patients with Li-Fraumeni syndrome. Radiat Oncol. 2010;5:104.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Bougeard G, Renaux-Petel M, Flaman JM, Charbonnier C, Fermey P, Belotti M, et al. Frebourg T Revisiting Li-Fraumeni syndrome from TP53 mutation carriers. J Clin Oncol. 2015;33(21):2345–52.

    Article  CAS  PubMed  Google Scholar 

  44. Kuhl C, Weigel S, Schrading S, Arand B, Bieling H, Konig R, et al. Prospective multicenter cohort study to refine management recommendations for women at elevated familial risk of breast cancer: the EVA trial. J Clin Oncol. 2010;28(9):1450–7.

    Article  PubMed  Google Scholar 

  45. Passaperuma K, Warner E, Causer PA, Hill KA, Messner S, Wong JW, et al. Narod SA Long-term results of screening with magnetic resonance imaging in women with BRCA mutations. Br J Cancer. 2012;107(1):24–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Warner E, Hill K, Causer P, Plewes D, Jong R, Yaffe M, et al. Prospective study of breast cancer incidence in women with a BRCA1 or BRCA2 mutation under surveillance with and without magnetic resonance imaging. J Clin Oncol. 2011;29(13):1664–9.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Domchek SM, Friebel TM, Singer CF, Evans DG, Lynch HT, Isaacs C, et al. Association of risk-reducing surgery in BRCA1 or BRCA2 mutation carriers with cancer risk and mortality. JAMA. 2010;304(9):967–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Finch AP, Lubinski J, Moller P, Singer CF, Karlan B, Senter L, et al. Impact of oophorectomy on cancer incidence and mortality in women with a BRCA1 or BRCA2 mutation. J Clin Oncol. 2014;32(15):1547–53.

    Article  PubMed  PubMed Central  Google Scholar 

  49. • Theobald KA, Susswein LR, Marshall ML, Roberts ME, Mester JL, Speyer D, et al. Utility of expedited hereditary cancer testing in the surgical management of patients with a new breast cancer diagnosis. Ann Surg Oncol. 2018;25(12):3556–62 An important paper which demonstrates the importance of expanded panels when testing for hereditary breast cancer.

    Article  PubMed  Google Scholar 

  50. Mandelker D, Zhang L, Kemel Y, Stadler ZK, Joseph V, Zehir A, et al. Mutation detection in patients with advanced cancer by universal sequencing of cancer-related genes in tumor and normal DNA vs guideline-based germline testing. JAMA. 2017;318(9):825–35.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Yadav S, Reeves A, Campian S, Paine A, Zakalik D. Outcomes of retesting BRCA negative patients using multigene panels. Familial Cancer. 2017;16(3):319–28.

    Article  PubMed  Google Scholar 

  52. • Crawford B, Adams SB, Sittler T, van den Akker J, Chan S, Leitner O, et al. Multi-gene panel testing for hereditary cancer predisposition in unsolved high-risk breast and ovarian cancer patients. Breast Cancer Res Treat. 2017;163(2):383–90 An important study which shows the benefits of expanded testing when considering hereditary breast cancer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Elsayegh N, Webster RD, Gutierrez Barrera AM, Lin H, Kuerer HM, Litton JK, et al. Arun BK Contralateral prophylactic mastectomy rate and predictive factors among patients with breast cancer who underwent multigene panel testing for hereditary cancer. Cancer Med. 2018;7(6):2718–26.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie E. Wood.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Breast Cancer Genetics

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Landry, K.K., Wood, M.E. Panel Testing for Hereditary Breast Cancer: More or Less?. Curr Breast Cancer Rep 12, 45–50 (2020). https://doi.org/10.1007/s12609-020-00361-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12609-020-00361-4

Keywords

Navigation