Skip to main content

Advertisement

Log in

Immunotherapy for HER2-Positive Breast Cancer: Changing the Paradigm

  • Immuno-oncology (S Tolaney, Section Editor)
  • Published:
Current Breast Cancer Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

To summarize and discuss the available evidence and ongoing efforts in order to establish the efficacy and safety of immunotherapeutic approaches in HER2-positive breast cancer.

Recent Findings

The introduction into the clinic of anti-HER2–targeted therapies more than 15 years ago resulted in a substantial improvement in the outcome of patients with HER2-overexpressing breast cancer. However, only patients with the highest levels of HER2 expression will potentially benefit from these therapies and, unfortunately, many patients progress or relapse after optimal treatment. As metastatic breast cancer remains an incurable disease, new therapeutic strategies are urgently needed to improve clinical outcomes in these patients. Immunotherapy is emerging as a new treatment modality in breast cancer. Although it has long been regarded as a non-immunogenic disease, new preclinical and clinical studies have emphasized the therapeutic potential of the use of anti-HER2 therapies in combination with immune checkpoint inhibitors in improving outcomes in breast cancer patients.

Summary

Emerging results from clinical trials evaluating immunotherapeutic agents, either as monotherapy or in combination with anti-HER2–targeted therapies, are showing promising results in the management of HER2-positive breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. • de Visser KE, Eichten A, LM C. Paradoxical roles of the immune system during cancer development. Nat Rev Cancer. 2006;6:24–37 This review provides an overview on the paradoxical role of adaptive and innate leukocytes as critical regulators of cancer progression and highlights new understanding that has been gained by manipulating immune responses in preclinical models.

    Article  PubMed  Google Scholar 

  2. Gravitz L. Cancer immunotherapy. Nature. 2013;504(7480):S1. https://doi.org/10.1038/504S1a.

    Article  CAS  PubMed  Google Scholar 

  3. Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science. 2011;331(6024):1565–70. https://doi.org/10.1126/science.1203486.

    Article  CAS  PubMed  Google Scholar 

  4. Sanmamed MF, Chen L. A paradigm shift in cancer immunotherapy: from enhancement to normalization. Cell. 2018;175(2):313–26. https://doi.org/10.1016/j.cell.2018.09.035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. The Nobel Prize in Physiology or Medicine 2018 https://www.nobelprize.org/prizes/medicine/2018/summary/. Accessed 8/9/2019.

  6. Ishida Y, Agata Y, Shibahara K, Honjo T. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J. 1992;11:3887–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. • Wei SC, Duffy CR, Allison JP. Fundamental mechanisms of immune checkpoint blockade therapy. Cancer Discov. 2018;8:1069–86 This article reviews the current state of T cell costimulatory mechanisms and immune checkpoint blockade therapy, mainly of CTLA-4 and PD-1, from a basic biology and immunologic perspective for the cancer research community.

    Article  PubMed  Google Scholar 

  8. Weintraub K. Drug development: releasing the brakes. Nature. 2013;504(7480):S6–8. https://doi.org/10.1038/504S6a.

    Article  CAS  PubMed  Google Scholar 

  9. Luen S, Virassamy B, Savas P, Salgado R, Loi S. The genomic landscape of breast cancer and its interaction with host immunity. Breast. 2016;29:241–50. https://doi.org/10.1016/j.breast.2016.07.015.

    Article  PubMed  Google Scholar 

  10. Polyak K. Heterogeneity in breast cancer. J Clin Invest. 2011;121(10):3786–8. https://doi.org/10.1172/jci60534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Reis-Filho JS, Pusztai L. Gene expression profiling in breast cancer: classification, prognostication, and prediction. Lancet. 2011;378(9805):1812–23. https://doi.org/10.1016/s0140-6736(11)61539-0.

    Article  CAS  PubMed  Google Scholar 

  12. Budczies J, Bockmayr M, Denkert C, Klauschen F, Lennerz JK, Gyorffy B, et al. Classical pathology and mutational load of breast cancer—integration of two worlds. J Pathol Clin Res. 2015;1(4):225–38. https://doi.org/10.1002/cjp2.25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Loi S. Tumor-infiltrating lymphocytes, breast cancer subtypes and therapeutic efficacy. Oncoimmunology. 2013;2(7):e24720. https://doi.org/10.4161/onci.24720.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Schumacher TN, Schreiber RD. Neoantigens in cancer immunotherapy. Science. 2015;348:69–74.

    Article  CAS  PubMed  Google Scholar 

  15. • Esteva FJ, Hubbard-Lucey VM, Tang J, Pusztai L. Immunotherapy and targeted therapy combinations in metastatic breast cancer. Lancet Oncol. 2019;20(3):e175–e86. https://doi.org/10.1016/s1470-2045(19)30026-9This review provides details of the rationale to evaluate novel combinations based on immunotherapeutic approaches in patients with metastatic breast cancer.

    Article  CAS  PubMed  Google Scholar 

  16. FDA - U.S. Food and Drug Administration. FDA approves atezolizumab for PD-L1 positive unresectable locally advanced or metastatic triple-negative breast cancer 2019 2019. https://www.fda.gov/drugs/drug-approvals-and-databases/fda-approves-atezolizumab-pd-l1-positive-unresectable-locally-advanced-or-metastatic-triple-negative. Accessed 8/30/2019.

  17. Schmid P, Adams S, Rugo HS, Schneeweiss A, Barrios CH, Iwata H, et al. Atezolizumab and Nab-paclitaxel in advanced triple-negative breast cancer. N Engl J Med. 2018;379(22):2108–21. https://doi.org/10.1056/NEJMoa1809615.

    Article  CAS  PubMed  Google Scholar 

  18. Catalano V, Turdo A, Di Franco S, Dieli F, Todaro M, Stassi G. Tumor and its microenvironment: a synergistic interplay. Semin Cancer Biol. 2013;23(6 Pt B):522–32. https://doi.org/10.1016/j.semcancer.2013.08.007.

    Article  CAS  PubMed  Google Scholar 

  19. Chen F, Zhuang X, Lin L, Yu P, Wang Y, Shi Y, et al. New horizons in tumor microenvironment biology: challenges and opportunities. BMC Med. 2015;13:45. https://doi.org/10.1186/s12916-015-0278-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chew V, Toh HC, Abastado JP. Immune microenvironment in tumor progression: characteristics and challenges for therapy. J Oncol. 2012;2012:608406. https://doi.org/10.1155/2012/608406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pages F, Galon J, Dieu-Nosjean MC, Tartour E, Sautes-Fridman C, Fridman WH. Immune infiltration in human tumors: a prognostic factor that should not be ignored. Oncogene. 2010;29(8):1093–102. https://doi.org/10.1038/onc.2009.416.

    Article  CAS  PubMed  Google Scholar 

  22. •• de Melo Gagliato D, Cortes J, Curigliano G, Loi S, Denkert C, Perez-Garcia J. Tumor-infiltrating lymphocytes in Breast Cancer and implications for clinical practice. Biochim Biophys Acta Rev Cancer. et al., 2017;1868(2):527–37. https://doi.org/10.1016/j.bbcan.2017.10.003Several trials have confirmed that tumor-infiltrating lymphocytes in the stroma are associated with favorable long-term outcome and increased chemosensitivity in breast cancer patients. This article summarizes data on the role of lymphocyte infiltration in breast cancer prognosis and response to therapy.

    Article  Google Scholar 

  23. Choritz H, Busche G, Kreipe H. Quality assessment of HER2 testing by monitoring of positivity rates. Virchows Arch. 2011;459(3):283–9. https://doi.org/10.1007/s00428-011-1132-8.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science. 1987;235(4785):177–82.

    Article  CAS  PubMed  Google Scholar 

  25. Slamon DJ, Godolphin W, Jones LA, Holt JA, Wong SG, Keith DE, et al. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science. 1989;244(4905):707–12.

    Article  CAS  PubMed  Google Scholar 

  26. Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med. 2001;344(11):783–92. https://doi.org/10.1056/nejm200103153441101.

    Article  CAS  PubMed  Google Scholar 

  27. Aaltomaa S, Lipponen P, Eskelinen M, Kosma VM, Marin S, Alhava E, et al. Lymphocyte infiltrates as a prognostic variable in female breast cancer. Eur J Cancer. 1992;28a(4-5):859–64. https://doi.org/10.1016/0959-8049(92)90134-n.

    Article  CAS  PubMed  Google Scholar 

  28. Loi S, Michiels S, Salgado R, Sirtaine N, Jose V, Fumagalli D, et al. Tumor infiltrating lymphocytes are prognostic in triple negative breast cancer and predictive for trastuzumab benefit in early breast cancer: results from the FinHER trial. Ann Oncol. 2014;25(8):1544–50. https://doi.org/10.1093/annonc/mdu112.

    Article  CAS  PubMed  Google Scholar 

  29. Kim S-R, Gavin PG, Pogue-Geile KL, Song N, Finnigan M, Bandos H, et al. Abstract 2837: a surrogate gene expression signature of tumor infiltrating lymphocytes (TILs) predicts degree of benefit from trastuzumab added to standard adjuvant chemotherapy in NSABP (NRG) trial B-31 for HER2+ breast cancer. Cancer Res. 2015;75(15 Supplement):2837. https://doi.org/10.1158/1538-7445.am2015-2837.

    Article  Google Scholar 

  30. Perez EA, Thompson EA, Ballman KV, Anderson SK, Asmann YW, Kalari KR, et al. Genomic analysis reveals that immune function genes are strongly linked to clinical outcome in the North Central Cancer Treatment Group n9831 adjuvant trastuzumab trial. J Clin Oncol. 2015;33(7):701–8. https://doi.org/10.1200/jco.2014.57.6298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Perez EA, Ballman KV, Tenner KS, Thompson EA, Badve SS, Bailey H, et al. Association of stromal tumor-infiltrating lymphocytes with recurrence-free survival in the N9831 adjuvant trial in patients with early-stage HER2-positive breast cancer. JAMA Oncol. 2016;2(1):56–64. https://doi.org/10.1001/jamaoncol.2015.3239.

    Article  PubMed  PubMed Central  Google Scholar 

  32. von Minckwitz G, Procter M, de Azambuja E, Zardavas D, Benyunes M, Viale G, et al. Adjuvant pertuzumab and trastuzumab in early HER2-positive breast cancer. N Engl J Med. 2017;377(2):122–31. https://doi.org/10.1056/NEJMoa1703643.

    Article  Google Scholar 

  33. Krop IE, Paulson J, Campbell C, Kiermaier AC, Andre F, Fumagalli D, et al. Genomic correlates of response to adjuvant trastuzumab (H) and pertuzumab (P) in HER2+ breast cancer (BC): biomarker analysis of the APHINITY trial. J Clin Oncol. 2019;37(15_suppl):1012. https://doi.org/10.1200/JCO.2019.37.15_suppl.1012.

    Article  Google Scholar 

  34. Salgado R, Denkert C, Campbell C, Savas P, Nuciforo P, Aura C, et al. Tumor-infiltrating lymphocytes and associations with pathological complete response and event-free survival in HER2-positive early-stage breast cancer treated with lapatinib and trastuzumab: a secondary analysis of the NeoALTTO trial. JAMA Oncol. 2015;1(4):448–54. https://doi.org/10.1001/jamaoncol.2015.0830.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Dieci MV, Bisagni G, Cagossi K, Bottini A, Sarti S, Piacentini F, et al. Abstract PD1-1: tumor infiltrating lymphocytes and correlation with outcome in CHER-LOB study. Cancer Res. 2015;75(9 Supplement):PD1. https://doi.org/10.1158/1538-7445.SABCS14-PD1-1.

    Article  Google Scholar 

  36. Dieci MV, Bisagni G, Cagossi K, Generali DG, Sarti S, Piacentini F, et al. Abstract P2-08-03. Survival analysis of the prospective randomized CHER-LOB study: correlation with tumor infiltrating lymphocytes. Cancer Res. 2016;76(4 Supplement):P2-08-3. https://doi.org/10.1158/1538-7445.SABCS15-P2-08-03.

    Article  Google Scholar 

  37. Denkert C, von Minckwitz G, Brase JC, Sinn BV, Gade S, Kronenwett R, et al. Tumor-infiltrating lymphocytes and response to neoadjuvant chemotherapy with or without carboplatin in human epidermal growth factor receptor 2-positive and triple-negative primary breast cancers. J Clin Oncol. 2015;33(9):983–91. https://doi.org/10.1200/jco.2014.58.1967.

    Article  CAS  PubMed  Google Scholar 

  38. Bianchini G, Pusztai L, Pienkowski T, Im YH, Bianchi GV, Tseng LM, et al. Immune modulation of pathologic complete response after neoadjuvant HER2-directed therapies in the NeoSphere trial. Ann Oncol. 2015;26(12):2429–36. https://doi.org/10.1093/annonc/mdv395.

    Article  CAS  PubMed  Google Scholar 

  39. Kawaguchi K, Suzuki E, Kataoka TR, Hirata M, Ohno S, Bando H, et al. Analysis of tumor infiltrating lymphocytes in HER2-positive primary breast cancer treated with neoadjuvant lapatinib and trastuzumab: the NeoLath study (JBCRG-16). J Clin Oncol. 2016;34(15 Supplement):599.

    Article  Google Scholar 

  40. Colinas C, Ceppi M, Lambertini M, Scartozzi M, Garaud S, Fumagalli D, et al. Tumor infiltrating lymphocytes in HER2-positive breast cancer patients treated with neoadjuvant chemotherapy plus trastuzumab, lapatinib or their combination: a meta-analysis of published randomized clinical trials. Ann Oncol. 2017;28(Suppl_1):27P. https://doi.org/10.1093/an-nonc/mdx138.004.

    Article  Google Scholar 

  41. Luen SJ, Salgado R, Fox S, Savas P, Eng-Wong J, Clark E, et al. Tumour-infiltrating lymphocytes in advanced HER2-positive breast cancer treated with pertuzumab or placebo in addition to trastuzumab and docetaxel: a retrospective analysis of the CLEOPATRA study. Lancet Oncol. 2017;18(1):52–62. https://doi.org/10.1016/s1470-2045(16)30631-3.

    Article  CAS  PubMed  Google Scholar 

  42. Liu S, Chen B, Burugu S, Leung S, Gao D, Virk S, et al. Role of cytotoxic tumor-infiltrating lymphocytes in predicting outcomes in metastatic HER2-positive breast cancer: a secondary analysis of a randomized clinical trial. JAMA Oncol. 2017;3(11):e172085. https://doi.org/10.1001/jamaoncol.2017.2085.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Honkanen T, Moilanen T, Karihtala P, Tiainen S, Auvinen P, Vayrynen JP, et al. Prognostic and predictive role of spatially positioned tumor infiltrating lymphocytes in metastatic HER2 positive breast cancer treated with trastuzumab. Sci Rep. 2017;7:18027. https://doi.org/10.1038/s41598-017-18266-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hudis CA. Trastuzumab—mechanism of action and use in clinical practice. N Engl J Med. 2007;357(1):39–51.

    Article  CAS  PubMed  Google Scholar 

  45. Valabrega G, Montemurro F, Aglietta M. Trastuzumab: mechanism of action, resistance and future perspectives in HER2-overexpressing breast cancer. Ann Oncol. 2007;18(6):977–84.

    Article  CAS  PubMed  Google Scholar 

  46. Ayoub NM, Al-Shami KM, Yaghan RJ. Immunotherapy for HER2-positive breast cancer: recent advances and combination therapeutic approaches. Breast Cancer (Dove Med Press). 2019;11:53–69. https://doi.org/10.2147/bctt.s175360.

    Article  CAS  Google Scholar 

  47. Gennari R, Menard S, Fagnoni F, Ponchio L, Scelsi M, Tagliabue E, et al. Pilot study of the mechanism of action of preoperative trastuzumab in patients with primary operable breast tumors overexpressing HER2. Clin Cancer Res. 2004;10(17):5650–5. https://doi.org/10.1158/1078-0432.ccr-04-0225.

    Article  CAS  PubMed  Google Scholar 

  48. Molina MA, Codony-Servat J, Albanell J, Rojo F, Arribas J, Trastuzumab JB. (Herceptin), a humanized anti-Her2 receptor monoclonal antibody, inhibits basal and activated Her2 ectodomain cleavage in breast cancer cells. Cancer Res. 2001;61:4744–9.

    CAS  PubMed  Google Scholar 

  49. Baselga J. J. A. Mechanism of action of anti-HER2 monoclonal antibodies. Ann Oncol Off J Eur Soc Med Oncol. 2001;12(Suppl 1):S35–41.

    Article  Google Scholar 

  50. Spiridon CI, Guinn S, Vittetta ES. A comparison of the in vitro and in vivo activities of IgG and F(ab′) 2 fragments of a mixture of three monoclonal anti-Her-2 antibodies. Clin Cancer Res. 2004;10:3542–51.

    Article  CAS  PubMed  Google Scholar 

  51. •• Arnould L, Gelly M, Penault-Llorca F, Benoit L, Bonnetain F, Migeon C, et al. Trastuzumab-based treatment of HER2-positive breast cancer: an antibody-dependent cellular cytotoxicity mechanism? Br J Cancer. 2006;94(2):259–67. https://doi.org/10.1038/sj.bjc.6602930This study supports an in vivo role for immune responses (antibody-dependent cell-mediated cytotoxicity) as a mechanism of action of trastuzumab.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Varchetta S, Gibelli N, Oliviero B, Nardini E, Gennari R, Gatti G, et al. Elements related to heterogeneity of antibody-dependent cell cytotoxicity in patients under trastuzumab therapy for primary operable breast cancer overexpressing Her2. Cancer Res. 2007;67(24):11991–9. https://doi.org/10.1158/0008-5472.can-07-2068.

    Article  CAS  PubMed  Google Scholar 

  53. Gavin PG, Song N, Kim SR, Lipchik C, Johnson NL, Bandos H, et al. Association of polymorphisms in FCGR2A and FCGR3A with degree of trastuzumab benefit in the adjuvant treatment of ERBB2/HER2–positive breast cancer. JAMA Oncol. 2017;3:335.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Hurvitz SA, Betting DJ, Stern HM, Quinaux E, Stinson J, Seshagiri S, et al. Analysis of Fc receptor IIIa and IIa polymorphisms: lack of correlation with outcome in trastuzumab-treated breast cancer patients. Clin Cancer Res. 2012;18:3478–86.

    Article  CAS  PubMed  Google Scholar 

  55. Musolino A, Naldi N, Bortesi B, Pezzuolo D, Capelletti M, Missale G, et al. Immunoglobulin G fragment C receptor polymorphisms and clinical efficacy of trastuzumab-based therapy in patients with HER-2/neu–positive metastatic breast cancer. J Clin Oncol. 2008;26:1789–96.

    Article  CAS  PubMed  Google Scholar 

  56. Blackwell KL, Burstein HJ, Storniolo AM, Rugo HS, Sledge G, Aktan G, et al. Overall survival benefit with lapatinib in combination with trastuzumab for patients with human epidermal growth factor receptor 2-positive metastatic breast cancer: final results from the EGF104900 Study. J Clin Oncol. 2012;30(21):2585–92. https://doi.org/10.1200/jco.2011.35.6725.

    Article  CAS  PubMed  Google Scholar 

  57. Scaltriti M, Verma C, Guzman M, Jimenez J, Parra JL, Pedersen K, et al. Lapatinib, a HER2 tyrosine kinase inhibitor, induces stabilization and accumulation of HER2 and potentiates trastuzumab-dependent cell cytotoxicity. Oncogene. 2009;28:803–14.

    Article  CAS  PubMed  Google Scholar 

  58. Maruyama T, Mimura K, Izawa S, Inoue A, Shiba S, Watanabe M, et al. Lapatinib enhances Herceptin-mediated antibody-dependent cellular cytotoxicity by up-regulation of cell surface HER2 expression. Anticancer Res. 2011;4v:2999–3005.

    Google Scholar 

  59. Malenfant SJ, Eckmann KR, Barnett CM. Pertuzumab: a new targeted therapy for HER2-positive metastatic breast cancer. Pharmacotherapy. 2014;34(1):60–71. https://doi.org/10.1002/phar.1338.

    Article  CAS  PubMed  Google Scholar 

  60. Yamashita-Kashima Y, Iijima S, Yorozu K, Furugaki K, Kurasawa M, Ohta M, et al. Pertuzumab in combination with trastuzumab shows significantly enhanced antitumor activity in her2-positive human gastric cancer xenograft models. Clin Cancer Res. 2011;17:5060–70.

    Article  CAS  PubMed  Google Scholar 

  61. Tóth G, Szöőr Á, Simon L, Yarden Y, Szöllősi J, Vereb G. The combination of trastuzumab and pertuzumab administered at approved doses may delay development of trastuzumab resistance by additively enhancing antibody-dependent cell-mediated cytotoxicity. MAbs. 2016;8:1361–70.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Mamidi S, Cinci M, Hasmann M, Fehring V, Kirschfink M. Lipoplex mediated silencing of membrane regulators (CD46, CD55 and CD59) enhances complement-dependent anti-tumor activity of trastuzumab and pertuzumab. Mol Oncol. 2013;7:580–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Scheuer W, Friess T, Burtscher H, Bossenmaier B, Endl J, Hassman M. Strongly enhanced antitumor activity of trastuzumab and pertuzumab combination treatment on HER2-positive human xenograft tumor models. Cancer Res. 2009;69:9330–6.

    Article  CAS  PubMed  Google Scholar 

  64. Galluzzi L, Buque A, Kepp O, Zitvogel L, Kroemer G. Immunogenic cell death in cancer and infectious disease. Nat Rev Immunol. 2017;17(2):97–111. https://doi.org/10.1038/nri.2016.107.

    Article  CAS  PubMed  Google Scholar 

  65. Kroemer G, Galluzzi L, Kepp O, Zitvogel L. Immunogenic cell death in cancer therapy. Annu Rev Immunol. 2013;31:51–72. https://doi.org/10.1146/annurev-immunol-032712-100008.

    Article  CAS  PubMed  Google Scholar 

  66. Fuchs Y, Steller H. Live to die another way: modes of programmed cell death and the signals emanating from dying cells. Nat Rev Mol Cell Biol. 2015;16:329–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. van Kempen TS, Wenink MH, Leijten EF, Radstake TR, Boes M. Perception of self: distinguishing autoimmunity from autoinflammation. Nat Rev Rheumatol. 2015;11:483–92.

    Article  PubMed  Google Scholar 

  68. Knutson KL, Clynes R, Shreeder B, Yeramian P, Kemp KP, Ballman K, et al. Improved survival of HER2+ breast cancer patients treated with trastuzumab and chemotherapy is associated with host antibody immunity against the HER2 intracellular domain. Cancer Res. 2016;76:3702e10.

    Article  Google Scholar 

  69. Loibl S, de la Pena L, Nekljudova V, Zardavas D, Michiels S, Denkert C, et al. Neoadjuvant buparlisib plus trastuzumab and paclitaxel for women with HER2+ primary breast cancer: a randomised, double-blind, placebo-controlled phase II trial (NeoPHOEBE). Eur J Cancer. 2017;85:133–45. https://doi.org/10.1016/j.ejca.2017.08.020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. von Minckwitz G, Huang CS, Mano MS, Loibl S, Mamounas EP, Untch M, et al. Trastuzumab emtansine for residual invasive HER2-positive breast cancer. N Engl J Med. 2019;380:617–28.

    Article  Google Scholar 

  71. Amiri-Kordestani L, Blumenthal GM, Xu QC, Zhang L, Tang SW, Ha L, et al. FDA approval: ado-trastuzumab emtansine for the treatment of patients with HER2-positive metastatic breast cancer. Clin Cancer Res. 2014;20(17):4436–41.

    Article  CAS  PubMed  Google Scholar 

  72. Martin K, Müller P, Schreiner J, Prince SS, Lardinois D, Heinzelmann-Schwarz VA, et al. The microtubule-depolymerizing agent ansamitocin P3 programs dendritic cells toward enhanced anti-tumor immunity. Cancer Immunol Immunother. 2014;63:925–38.

    Article  CAS  PubMed  Google Scholar 

  73. Müller P, Martin K, Theurich S, Schreiner J, Savic S, Terszowski G, et al. Microtubule-depolymerizing agents used in antibody-drug conjugates induce antitumor immunity by stimulation of dendritic cells. Cancer Immunol Res. 2014;2:741–55.

    Article  PubMed  Google Scholar 

  74. Muller P, Kreuzaler M, Khan T, Thommen DS, Martin K, Glatz K, et al. Trastuzumab emtansine (T-DM1) renders HER2+ breast cancer highly susceptible to CTLA-4/PD-1 blockade. Sci Transl Med. 2015;7(315):315ra188. https://doi.org/10.1126/scitranslmed.aac4925.

    Article  CAS  PubMed  Google Scholar 

  75. Loi S, Giobbie-Hurder A, Gombos A, Bachelot T, Hui R, Curigliano G, et al. Pembrolizumab plus trastuzumab in trastuzumab-resistant, advanced, HER2-positive breast cancer (PANACEA): a single-arm, multicentre, phase 1b-2 trial. Lancet Oncol. 2019;20(3):371–82. https://doi.org/10.1016/s1470-2045(18)30812-x.

    Article  CAS  PubMed  Google Scholar 

  76. Chia SKL, Bedard PL, Hilton J, et al. A phase 1 study of a PD-L1 antibody (durvalumab) in combination with trastuzumab in HER-2 positive metastatic breast cancer (MBC) progressing on prior anti HER-2 therapies (CCTGIND.229/NCT02649686). 1029 (abstr). Proc Am Soc Clin Oncol. 2018;36(suppl):1029.

    Article  Google Scholar 

  77. Emens L, Esteva FJ, Beresford MJ, et al., editors. Results from KATE2, a randomized phase 2 study of atezolizumab (atezo)+trastuzumab emtansine (T-DM1) vs placebo (pbo)+T-DM1 in previously treated HER2+ advanced breast cancer. PD3–01 (abstr). AACR - San Antonio Breast Cancer Symposium; 2018; San Antonio, TX.

  78. Nordstrom JL, Gorlatov S, Zhang W, Yang Y, Huang L, Burke S, et al. Anti-tumor activity and toxicokinetics analysis of MGAH22, an anti-HER2 monoclonal antibody with enhanced Fcgamma receptor binding properties. Breast Cancer Res. 2011;13:R123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Bang YJ, Giaccone G, Im SA, Oh DY, Bauer TM, Nordstrom JL, et al. First-in-human phase 1 study of margetuximab (MGAH22), an Fc-modified chimeric monoclonal antibody, in patients with HER2-positive advanced solid tumors. Ann Oncol. 2017;28(4):855–61. https://doi.org/10.1093/annonc/mdx002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Rugo HS, Im SA, Shaw Wright G, Escriva-de-Romani S, DeLaurentis M, Cortes J, et al., editors. SOPHIA primary analysis: a phase 3 study of margetuximab + chemotherapy versus trastuzumab + chemotherapy in patients with HER2+ metastatic breast cancer after prior anti-HER2 therapies. Abstract 1000. ASCO Annual Meeting; 2019; Chicago, IL.

  81. Geuijen C, Rovers E, Nijhuis R, den Blanken-Smit R, Visser T, Bartelink W, et al. Preclinical activity of MCLA-128, and ADCC enhanced bispecific IgG1 antibody targeting the HER2:HER3 heterodimer. J Clin Oncol. 2014;32(15(suppl)):560.

    Article  Google Scholar 

  82. Meric-Bernstam F, Beeram M, Mayordomo I, et al. Single agent activity of ZW25, a HER2-targeted bispecific antibody, in heavily pretreated HER2-expressing cancers [abstract]. J Clin Oncol. 2018;36(Suppl):Abstract 2500.

    Article  Google Scholar 

  83. • Basu A, Ramamoorthi G, Jia Y, Faughn J, Wiener D, Awshah S, et al. Immunotherapy in breast cancer: current status and future directions. Adv Cancer Res. 2019;143:295–349. https://doi.org/10.1016/bs.acr.2019.03.006This article discusses the challenges of breast cancer immunotherapy and future directions for potential ways of improving responses to immunotherapy in breast cancer.

    Article  PubMed  Google Scholar 

  84. Oiseth S, Aziz M. Cancer immunotherapy: a brief review of the history, possibilities, and challenges ahead. J Cancer Metastasis Treat. 2017;3:250–61.

    Article  CAS  Google Scholar 

  85. Du YJ, Lin ZM, Zhao YH, Feng XP, Wang CQ, Wang G, et al. Stability of the recombinant anti-erbB2 scFv-Fc-interleukin-2 fusion protein and its inhibition of HEr2-overexpressing tumor cells. Int J Oncol. 2013;42(3):507–16. https://doi.org/10.3892/ijo.2012.1747.

    Article  CAS  PubMed  Google Scholar 

  86. Nocera NF, Lee MC, De La Cruz LM, Rosemblit C, Czerniecki BJ. Restoring lost anti-HER-2 Th1 immunity in breast cancer: a crucial role for Th1 cytokines in therapy and prevention. Front Pharmacol. 2016;7:356. https://doi.org/10.3389/fphar.2016.00356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Radford KJ, Tullett KM, Lahoud MH. Dendritic cells and cancer immunotherapy. Curr Opin Immunol. 2014;27:26–32. https://doi.org/10.1016/j.coi.2014.01.005.

    Article  CAS  PubMed  Google Scholar 

  88. Levine BL, Miskin J, Wonnacott K, Keir C. Global manufacturing of CAR T cell therapy. Mol Ther Methods Clin Dev. 2017;4:92–101. https://doi.org/10.1016/j.omtm.2016.12.006.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Cortés.

Ethics declarations

Conflict of Interest

Jesús Soberino reports personal fees and other from Roche, personal fees from Eisai, and other from Merck Sharp & Dohme (MSD) outside the submitted work. José Pérez-García reports work with Roche and Lilly outside the submitted work. Javier Cortés reports grants, personal fees, and other from Roche; personal fees and other from Celgene; work with Cellestia; grants and other from AstraZeneca; work with Biothera Pharmaceuticals; work with Merus; work with Seattle Genetics; work with Daiichi Sankyo; work with Erytech; work with Athenex; work with Pholypor; work with Lilly; work with Servier; personal fees from Novartis, grants, and personal fees from Eisai; grants and personal fees from Pfizer; personal fees from Samsung; grants from Ariad Pharmaceuticals; grants from Baxalta GmbH/Servier Affaires; grants from Bayer HealthCare; grants from F. Hoffman-La Roche; grants from Guardant Health; grants from Merck Sharp & Dohme (MSD); grants from PIQUR Therapeutics; grants from Puma Biotechnology; grants from Queen Mary University of London; and work with MedSIR outside the submitted work. Fabricio Racca and Luis F. García-Fernández declare no conflicts of interest relevant to this manuscript.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Immuno-oncology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soberino, J., Racca, F., Pérez-García, J. et al. Immunotherapy for HER2-Positive Breast Cancer: Changing the Paradigm. Curr Breast Cancer Rep 11, 248–258 (2019). https://doi.org/10.1007/s12609-019-00332-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12609-019-00332-4

Keywords

Navigation