Skip to main content

Advertisement

Log in

Mammographic Density: Intersection of Advocacy, Science, and Clinical Practice

  • Risk and Prevention (ME Wood, Section Editor)
  • Published:
Current Breast Cancer Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Here we aim to review the association between mammographic density, collagen structure, and breast cancer risk.

Recent Findings

While mammographic density is a strong predictor of breast cancer risk in populations, studies by Boyd show that mammographic density does not predict breast cancer risk in individuals. Mammographic density is affected by age, parity, menopausal status, race/ethnicity, and body mass index (BMI). New studies normalize mammographic density to BMI and this may provide a more accurate way to compare mammographic density in women of diverse race and ethnicity. Preclinical and tissue-based studies have investigated the role collagen composition and structure in predicting breast cancer risk. There is emerging evidence that collagen structure may activate signaling pathways associated with aggressive breast cancer biology.

Summary

Measurement of film mammographic density does not adequately capture the complex signaling that occurs in women with at-risk collagen. New ways to measure at-risk collagen potentially can provide a more accurate view of risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. •• Boyd NF, Martin LJ, Yaffe MJ, Minkin S. Mammographic density and breast cancer risk: current understanding and future prospects. Breast Cancer Res. 2011;13(6):223. https://doi.org/10.1186/bcr2942. Summary of studies on mammographic density.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Cecchini RS, Costantino JP, Cauley JA, Cronin WM, Wickerham DL, Bandos H, et al. Baseline mammographic breast density and the risk of invasive breast cancer in postmenopausal women participating in the NSABP study of tamoxifen and raloxifene (STAR). Cancer Prev Res. 2012;5(11):1321–9. https://doi.org/10.1158/1940-6207.CAPR-12-0273.

    Article  CAS  Google Scholar 

  3. https://www.diagnosticimaging.com/breast-imaging/breast-density-notification-laws-state%2D%2Dinteractive-map. Accessed 03/11/2019.

  4. http://www.nytimes.com/2012/10/25/health/laws-tell-mammogram-clinics-to-address-breast-density.html. Accessed 03/15/2019.

  5. Saslow D, Boetes C, Burke W, Harms S, Leach MO, Lehman CD, et al. American Cancer Society guidelines for breast screening with MRI as an adjunct to mammography. CA Cancer J Clin. 2007;57(2):75–89.

    Article  PubMed  Google Scholar 

  6. Wolfe JN. Breast patterns as an index of risk for developing breast cancer. AJR Am J Roentgenol. 1976;126(6):1130–7. https://doi.org/10.2214/ajr.126.6.1130.

    Article  CAS  PubMed  Google Scholar 

  7. Yaffe MJ. Mammographic density. Measurement of mammographic density. Breast Cancer Res. 2008;10(3):209. https://doi.org/10.1186/bcr2102.

    Article  PubMed  PubMed Central  Google Scholar 

  8. •• Boyd NF, Rommens JM, Vogt K, Lee V, Hopper JL, Yaffe MJ, et al. Mammographic breast density as an intermediate phenotype for breast cancer. Lancet Oncol. 2005;6(10):798–808. https://doi.org/10.1016/S1470-2045(05)70390-9. Demonstration that mammographic density can be used as an intermediate biomarker of risk in clinical trials.

    Article  PubMed  Google Scholar 

  9. Carney PA, Miglioretti DL, Yankaskas BC, Kerlikowske K, Rosenberg R, Rutter CM, et al. Individual and combined effects of age, breast density, and hormone replacement therapy use on the accuracy of screening mammography. Ann Intern Med. 2003;138(3):168–75.

    Article  PubMed  Google Scholar 

  10. Checka CM, Chun JE, Schnabel FR, Lee J, Toth H. The relationship of mammographic density and age: implications for breast cancer screening. AJR Am J Roentgenol. 2012;198(3):W292–5. https://doi.org/10.2214/AJR.10.6049.

    Article  PubMed  Google Scholar 

  11. Laya MB, Gallagher JC, Schreiman JS, Larson EB, Watson P, Weinstein L. Effect of postmenopausal hormonal replacement therapy on mammographic density and parenchymal pattern. Radiology. 1995;196(2):433–7. https://doi.org/10.1148/radiology.196.2.7617857.

    Article  CAS  PubMed  Google Scholar 

  12. Gierach GL, Loud JT, Chow CK, Prindiville SA, Eng-Wong J, Soballe PW, et al. Mammographic density does not differ between unaffected BRCA1/2 mutation carriers and women at low-to-average risk of breast cancer. Breast Cancer Res Treat. 2010;123(1):245–55. https://doi.org/10.1007/s10549-010-0749-7.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Byrne C, Schairer C, Wolfe J, Parekh N, Salane M, Brinton LA, et al. Mammographic features and breast cancer risk: effects with time, age, and menopause status. J Natl Cancer Inst. 1995;87(21):1622–9.

    Article  CAS  PubMed  Google Scholar 

  14. Vacek PM, Geller BM. A prospective study of breast cancer risk using routine mammographic breast density measurements. Cancer Epidemiol Biomark Prev. 2004;13(5):715–22.

    Google Scholar 

  15. Ziv E, Tice J, Smith-Bindman R, Shepherd J, Cummings S, Kerlikowske K. Mammographic density and estrogen receptor status of breast cancer. Cancer Epidemiol Biomark Prev. 2004;13(12):2090–5.

    CAS  Google Scholar 

  16. Eng-Wong J, Orzano-Birgani J, Chow CK, Venzon D, Yao J, Galbo CE, et al. Effect of raloxifene on mammographic density and breast magnetic resonance imaging in premenopausal women at increased risk for breast cancer. Cancer Epidemiol Biomark Prev. 2008;17(7):1696–701. https://doi.org/10.1158/1055-9965.EPI-07-2752.

    Article  CAS  Google Scholar 

  17. Conroy SM, Butler LM, Harvey D, Gold EB, Sternfeld B, Oestreicher N, et al. Physical activity and change in mammographic density: the Study of Women’s Health Across the Nation. Am J Epidemiol. 2010;171(9):960–8. https://doi.org/10.1093/aje/kwq025.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Woolcott CG, Courneya KS, Boyd NF, Yaffe MJ, Terry T, McTiernan A, et al. Mammographic density change with 1 year of aerobic exercise among postmenopausal women: a randomized controlled trial. Cancer Epidemiol Biomark Prev. 2010;19(4):1112–21. https://doi.org/10.1158/1055-9965.EPI-09-0801.

    Article  Google Scholar 

  19. Martin LJ, Li Q, Melnichouk O, Greenberg C, Minkin S, Hislop G, et al. A randomized trial of dietary intervention for breast cancer prevention. Cancer Res. 2011;71(1):123–33. https://doi.org/10.1158/0008-5472.CAN-10-1436.

    Article  CAS  PubMed  Google Scholar 

  20. •• Cuzick J, Warwick J, Pinney E, Duffy SW, Cawthorn S, Howell A, et al. Tamoxifen-induced reduction in mammographic density and breast cancer risk reduction: a nested case-control study. J Natl Cancer Inst. 2011;103(9):744–52. https://doi.org/10.1093/jnci/djr079. Demonstration that mammographic density declines in response to tamoxifen.

    Article  CAS  PubMed  Google Scholar 

  21. •• McCormack VA, dos Santos Silva I. Breast density and parenchymal patterns as markers of breast cancer risk: a meta-analysis. Cancer Epidemiol Biomark Prev. 2006;15(6):1159–69. https://doi.org/10.1158/1055-9965.EPI-06-0034. Analysis of breast density and parenchymal pattering as risk markers.

    Article  Google Scholar 

  22. Egan RL, Mosteller RC. Breast cancer mammography patterns. Cancer. 2006;40(5):2087–90.

    Article  Google Scholar 

  23. •• Boyd NF, Guo H, Martin LJ, Sun L, Stone J, Fishell E, et al. Mammographic density and the risk and detection of breast cancer. N Engl J Med. 2007;356(3):227–36. https://doi.org/10.1056/NEJMoa062790. Evidence of a masking effect from high density.

    Article  CAS  PubMed  Google Scholar 

  24. Chen Z, Wu AH, Gauderman WJ, Bernstein L, Ma H, Pike MC, et al. Does mammographic density reflect ethnic differences in breast cancer incidence rates? Am J Epidemiol. 2004;159(2):140–7.

    Article  PubMed  Google Scholar 

  25. Razzaghi H, Troester MA, Gierach GL, Olshan AF, Yankaskas BC, Millikan RC. Mammographic density and breast cancer risk in White and African American women. Breast Cancer Res Treat. 2012;135(2):571–80. https://doi.org/10.1007/s10549-012-2185-3.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Johns PC, Yaffe MJ. X-ray characterisation of normal and neoplastic breast tissues. Phys Med Biol. 1987;32(6):675–95.

    Article  CAS  PubMed  Google Scholar 

  27. Pollán M, Lope V, Miranda-García J, García M, Casanova F, Sánchez-Contador C, et al. Adult weight gain, fat distribution and mammographic density in Spanish pre-and post-menopausal women (DDM-Spain). Breast Cancer Res Treat. 2012;1–16.

  28. Couto E, Qureshi SA, Hofvind S, Hilsen M, Aase H, Skaane P, et al. Hormone therapy use and mammographic density in postmenopausal Norwegian women. Breast Cancer Res Treat. 2012;132(1):297–305. https://doi.org/10.1007/s10549-011-1810-x.

    Article  CAS  PubMed  Google Scholar 

  29. Lope V, Pérez-Gómez B, Sánchez-Contador C, Santamariña MC, Moreo P, Vidal C, et al. Obstetric history and mammographic density: a population-based cross-sectional study in Spain (DDM-Spain). Breast Cancer Res Treat. 2012;1–10.

  30. Boyd NF, Martin LJ, Stone J, Greenberg C, Minkin S, Yaffe MJ. Mammographic densities as a marker of human breast cancer risk and their use in chemoprevention. Curr Oncol Rep. 2001;3(4):314–21.

    Article  CAS  PubMed  Google Scholar 

  31. Conklin MW, Eickhoff JC, Riching KM, Pehlke CA, Eliceiri KW, Provenzano PP, et al. Aligned collagen is a prognostic signature for survival in human breast carcinoma. Am J Pathol. 2011;178(3):1221–32. https://doi.org/10.1016/j.ajpath.2010.11.076.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Riching KM, Cox BL, Salick MR, Pehlke C, Riching AS, Ponik SM, et al. 3D collagen alignment limits protrusions to enhance breast cancer cell persistence. Biophys J. 2014;107(11):2546–58. https://doi.org/10.1016/j.bpj.2014.10.035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Arendt LM, Rudnick JA, Keller PJ, Kuperwasser C. Stroma in breast development and disease. Semin Cell Dev Biol. 2010;21(1):11–8. https://doi.org/10.1016/j.semcdb.2009.10.003.

    Article  CAS  PubMed  Google Scholar 

  34. Tamimi SO, Ahmed A. Stromal changes in invasive breast carcinoma: an ultrastructural study. J Pathol. 1987;153(2):163–70. https://doi.org/10.1002/path.1711530209.

    Article  CAS  PubMed  Google Scholar 

  35. Sahai E, Wyckoff J, Philippar U, Segall JE, Gertler F, Condeelis J. Simultaneous imaging of GFP, CFP and collagen in tumors in vivo using multiphoton microscopy. BMC Biotechnol. 2005;5:14. https://doi.org/10.1186/1472-6750-5-14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Goswami S, Sahai E, Wyckoff JB, Cammer M, Cox D, Pixley FJ, et al. Macrophages promote the invasion of breast carcinoma cells via a colony-stimulating factor-1/epidermal growth factor paracrine loop. Cancer Res. 2005;65(12):5278–83. https://doi.org/10.1158/0008-5472.CAN-04-1853.

    Article  CAS  PubMed  Google Scholar 

  37. Wolf K, Mazo I, Leung H, Engelke K, von Andrian UH, Deryugina EI, et al. Compensation mechanism in tumor cell migration: mesenchymal-amoeboid transition after blocking of pericellular proteolysis. J Cell Biol. 2003;160(2):267–77. https://doi.org/10.1083/jcb.200209006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Provenzano PP, Eliceiri KW, Campbell JM, Inman DR, White JG, Keely PJ. Collagen reorganization at the tumor-stromal interface facilitates local invasion. BMC Med. 2006;4(1):38. https://doi.org/10.1186/1741-7015-4-38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Provenzano PP, Inman DR, Eliceiri KW, Knittel JG, Yan L, Rueden CT, et al. Collagen density promotes mammary tumor initiation and progression. BMC Med. 2008;6:11. https://doi.org/10.1186/1741-7015-6-11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Maglione JE, Moghanaki D, Young LJ, Manner CK, Ellies LG, Joseph SO, et al. Transgenic Polyoma middle-T mice model premalignant mammary disease. Cancer Res. 2001;61(22):8298–305.

    CAS  PubMed  Google Scholar 

  41. Lin EY, Jones JG, Li P, Zhu L, Whitney KD, Muller WJ, et al. Progression to malignancy in the polyoma middle T oncoprotein mouse breast cancer model provides a reliable model for human diseases. Am J Pathol. 2003;163(5):2113–26. https://doi.org/10.1016/S0002-9440(10)63568-7.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Wyckoff JB, Wang Y, Lin EY, Li JF, Goswami S, Stanley ER, et al. Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors. Cancer Res. 2007;67(6):2649–56. https://doi.org/10.1158/0008-5472.CAN-06-1823.

    Article  CAS  PubMed  Google Scholar 

  43. Wang W, Wyckoff JB, Frohlich VC, Oleynikov Y, Huttelmaier S, Zavadil J, et al. Single cell behavior in metastatic primary mammary tumors correlated with gene expression patterns revealed by molecular profiling. Cancer Res. 2002;62(21):6278–88.

    CAS  PubMed  Google Scholar 

  44. •• Provenzano PP, Inman DR, Eliceiri KW, Trier SM, Keely PJ. Contact guidance mediated three-dimensional cell migration is regulated by Rho/ROCK-dependent matrix reorganization. Biophys J. 2008;95(11):5374–84. https://doi.org/10.1529/biophysj.108.133116. Study demonstrating linkage between contact, migration, and signaling.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Campagnola PJ, Loew LM. Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms. Nat Biotechnol. 2003;21(11):1356–60. https://doi.org/10.1038/nbt894.

    Article  CAS  PubMed  Google Scholar 

  46. Raub CB, Unruh J, Suresh V, Krasieva T, Lindmo T, Gratton E, et al. Image correlation spectroscopy of multiphoton images correlates with collagen mechanical properties. Biophys J. 2008;94(6):2361–73. https://doi.org/10.1529/biophysj.107.120006.

    Article  CAS  PubMed  Google Scholar 

  47. Reiser KM, Bratton C, Yankelevich DR, Knoesen A, Rocha-Mendoza I, Lotz J. Quantitative analysis of structural disorder in intervertebral disks using second harmonic generation imaging: comparison with morphometric analysis. J Biomed Opt. 2007;12(6):064019. https://doi.org/10.1117/1.2812631.

    Article  PubMed  Google Scholar 

  48. Erikson A, Ortegren J, Hompland T, de Lange Davies C, Lindgren M. Quantification of the second-order nonlinear susceptibility of collagen I using a laser scanning microscope. J Biomed Opt. 2007;12(4):044002. https://doi.org/10.1117/1.2772311.

    Article  CAS  PubMed  Google Scholar 

  49. Kirkpatrick ND, Brewer MA, Utzinger U. Endogenous optical biomarkers of ovarian cancer evaluated with multiphoton microscopy. Cancer Epidemiol Biomark Prev. 2007;16(10):2048–57. https://doi.org/10.1158/1055-9965.EPI-07-0009.

    Article  CAS  Google Scholar 

  50. Schenke-Layland K, Stock UA, Nsair A, Xie J, Angelis E, Fonseca CG, et al. Cardiomyopathy is associated with structural remodelling of heart valve extracellular matrix. Eur Heart J. 2009;30(18):2254–65. https://doi.org/10.1093/eurheartj/ehp267.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Lacomb R, Nadiarnykh O, Campagnola PJ. Quantitative second harmonic generation imaging of the diseased state osteogenesis imperfecta: experiment and simulation. Biophys J. 2008;94(11):4504–14. https://doi.org/10.1529/biophysj.107.114405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hompland T, Erikson A, Lindgren M, Lindmo T, de Lange Davies C. Second-harmonic generation in collagen as a potential cancer diagnostic parameter. J Biomed Opt. 2008;13(5):054050. https://doi.org/10.1117/1.2983664.

    Article  CAS  PubMed  Google Scholar 

  53. •• Conklin MW, Gangnon RE, Sprague BL, Van Gemert L, Hampton JM, Eliceiri KW, et al. Collagen alignment as a predictor of recurrence after ductal carcinoma in situ. Cancer Epidemiol Biomark Prev. 2018;27(2):138–45. https://doi.org/10.1158/1055-9965.EPI-17-0720. Study of collagen alignment as a predictor of DCIS recurrence.

    Article  CAS  Google Scholar 

  54. McConnell JC, O’Connell OV, Brennan K, Weiping L, Howe M, Joseph L, et al. Increased peri-ductal collagen micro-organization may contribute to raised mammographic density. Breast Cancer Res. 2016;18(1):5. https://doi.org/10.1186/s13058-015-0664-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Butcher DT, Alliston T, Weaver VM. A tense situation: forcing tumour progression. Nat Rev Cancer. 2009;9(2):108–22. https://doi.org/10.1038/nrc2544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Paszek MJ, Zahir N, Johnson KR, Lakins JN, Rozenberg GI, Gefen A, et al. Tensional homeostasis and the malignant phenotype. Cancer Cell. 2005;8(3):241–54. https://doi.org/10.1016/j.ccr.2005.08.010.

    Article  CAS  PubMed  Google Scholar 

  57. Galbraith CG, Yamada KM, Sheetz MP. The relationship between force and focal complex development. J Cell Biol. 2002;159(4):695–705. https://doi.org/10.1083/jcb.200204153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Giancotti FG, Ruoslahti E. Integrin signaling. Science. 1999;285(5430):1028–32.

    Article  CAS  PubMed  Google Scholar 

  59. Riveline D, Zamir E, Balaban NQ, Schwarz US, Ishizaki T, Narumiya S, et al. Focal contacts as mechanosensors: externally applied local mechanical force induces growth of focal contacts by an mDia1-dependent and ROCK-independent mechanism. J Cell Biol. 2001;153(6):1175–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Tzima E, del Pozo MA, Shattil SJ, Chien S, Schwartz MA. Activation of integrins in endothelial cells by fluid shear stress mediates Rho-dependent cytoskeletal alignment. EMBO J. 2001;20(17):4639–47. https://doi.org/10.1093/emboj/20.17.4639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Northcott JM, Dean IS, Mouw JK, Weaver VM. Feeling stress: the mechanics of cancer progression and aggression. Front Cell Dev Biol. 2018;6:17. https://doi.org/10.3389/fcell.2018.00017.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Wozniak MA, Modzelewska K, Kwong L, Keely PJ. Focal adhesion regulation of cell behavior. Biochim Biophys Acta. 2004;1692(2–3):103–19. https://doi.org/10.1016/j.bbamcr.2004.04.007.

    Article  CAS  PubMed  Google Scholar 

  63. Shi Q, Boettiger D. A novel mode for integrin-mediated signaling: tethering is required for phosphorylation of FAK Y397. Mol Biol Cell. 2003;14(10):4306–15. https://doi.org/10.1091/mbc.e03-01-0046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. •• Provenzano PP, Inman DR, Eliceiri KW, Keely PJ. Matrix density-induced mechanoregulation of breast cell phenotype, signaling and gene expression through a FAK-ERK linkage. Oncogene. 2009;28(49):4326–43. https://doi.org/10.1038/onc.2009.299. Demonstration that mechanical signaling promotes FAK-signaling.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Yu H, Mouw JK, Weaver VM. Forcing form and function: biomechanical regulation of tumor evolution. Trends Cell Biol. 2011;21(1):47–56. https://doi.org/10.1016/j.tcb.2010.08.015.

    Article  PubMed  Google Scholar 

  66. Provenzano PP, Keely PJ. Mechanical signaling through the cytoskeleton regulates cell proliferation by coordinated focal adhesion and Rho GTPase signaling. J Cell Sci. 2011;124(Pt 8):1195–205. https://doi.org/10.1242/jcs.067009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Sun HW, Tong SL, He J, Wang Q, Zou L, Ma SJ, et al. RhoA and RhoC -siRNA inhibit the proliferation and invasiveness activity of human gastric carcinoma by Rho/PI3K/Akt pathway. World J Gastroenterol. 2007;13(25):3517–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Dupont S, Morsut L, Aragona M, Enzo E, Giulitti S, Cordenonsi M, et al. Role of YAP/TAZ in mechanotransduction. Nature. 2011;474(7350):179–83. https://doi.org/10.1038/nature10137.

    Article  CAS  PubMed  Google Scholar 

  69. Du J, Zu Y, Li J, Du S, Xu Y, Zhang L, et al. Extracellular matrix stiffness dictates Wnt expression through integrin pathway. Sci Rep. 2016;6:20395. https://doi.org/10.1038/srep20395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Irianto J, Pfeifer CR, Ivanovska IL, Swift J, Discher DE. Nuclear lamins in cancer. Cell Mol Bioeng. 2016;9(2):258–67. https://doi.org/10.1007/s12195-016-0437-8.

    Article  CAS  PubMed  Google Scholar 

  71. Osmanagic-Myers S, Dechat T, Foisner R. Lamins at the crossroads of mechanosignaling. Genes Dev. 2015;29(3):225–37. https://doi.org/10.1101/gad.255968.114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Swift J, Ivanovska IL, Buxboim A, Harada T, Dingal PC, Pinter J, et al. Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. Science. 2013;341(6149):1240104. https://doi.org/10.1126/science.1240104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Vartiainen MK, Guettler S, Larijani B, Treisman R. Nuclear actin regulates dynamic subcellular localization and activity of the SRF cofactor MAL. Science. 2007;316(5832):1749–52. https://doi.org/10.1126/science.1141084.

    Article  CAS  PubMed  Google Scholar 

  74. Ho CY, Jaalouk DE, Vartiainen MK, Lammerding J. Lamin A/C and emerin regulate MKL1-SRF activity by modulating actin dynamics. Nature. 2013;497(7450):507–11. https://doi.org/10.1038/nature12105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was financially supported by the National Institutes of Health/National Cancer Institute (NIH/NCI) grants R01CA155664, R01CA158668, R01CA170851, R01CA192914, and U01CA189283 (all to VLS) and P30CA033572.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victoria L. Seewaldt.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Disclaimer

The funders had no role in the manuscript design, data analysis, decision to publish, or preparation of the manuscript.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Katherine Tossas-Milligan and Sundus Shalabi are co-first authors.

This article is part of the Topical Collection on Risk and Prevention

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tossas-Milligan, K., Shalabi, S., Jones, V. et al. Mammographic Density: Intersection of Advocacy, Science, and Clinical Practice. Curr Breast Cancer Rep 11, 100–110 (2019). https://doi.org/10.1007/s12609-019-00316-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12609-019-00316-4

Keywords

Navigation