Skip to main content

Advertisement

Log in

Immunotherapy Approaches to Breast Cancer

  • Systemic Therapies (M Liu and T Haddad, Section Editors)
  • Published:
Current Breast Cancer Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Activating the immune system to eradicate breast cancer has emerged as a promising treatment strategy, and immune checkpoint inhibition has demonstrated activity in both advanced and early stage disease. Here we review recent clinical trial results of immunotherapy approaches to treat breast cancer.

Recent Findings

A number of trials of immune checkpoint inhibitors, both as monotherapy and in combination with other therapies, have been reported. While response rates with monotherapy in the advanced stage setting are relatively low, the durability of responses observed is remarkable. While PD-L1 positivity enriches for responders, it is not a consistent predictor of response. Response appears to correlate more strongly with tumor-infiltrating lymphocyte (TIL) density.

Summary

Immune checkpoint inhibition alone and in combination with chemotherapy appears well tolerated with manageable side effects. Treatment clearly benefits a subset of patients, and more precise biomarkers of response are needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Loi S, Sirtaine N, Piette F, Salgado R, Viale G, Van Eenoo F, et al. Prognostic and predictive value of tumor-infiltrating lymphocytes in a phase III randomized adjuvant breast cancer trial in node-positive breast cancer comparing the addition of docetaxel to doxorubicin with doxorubicin-based chemotherapy: BIG 02-98. J Clin Oncol. 2013;31(7):860–7.

    Article  CAS  PubMed  Google Scholar 

  2. Savas P, Salgado R, Denkert C, Sotiriou C, Darcy PK, Smyth MJ, et al. Clinical relevance of host immunity in breast cancer: from TILs to the clinic. Nat Rev Clin Oncol. 2016;13(4):228–41.

    Article  CAS  PubMed  Google Scholar 

  3. Adams S, Gray RJ, Demaria S, Goldstein L, Perez EA, Shulman LN, et al. Prognostic value of tumor-infiltrating lymphocytes in triple-negative breast cancers from two phase III randomized adjuvant breast cancer trials: ECOG 2197 and ECOG 1199. J Clin Oncol. 2014;32(27):2959–66.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Salgado R, Denkert C, Campbell C, Savas P, Nuciforo P, Aura C, et al. Tumor-infiltrating lymphocytes and associations with pathological complete response and event-free survival in HER2-positive early-stage breast cancer treated with lapatinib and trastuzumab: a secondary analysis of the NeoALTTO trial. JAMA oncology. 2015;1(4):448–54.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ali HR, Provenzano E, Dawson SJ, Blows FM, Liu B, Shah M, et al. Association between CD8+ T-cell infiltration and breast cancer survival in 12,439 patients. Ann Oncol. 2014;25(8):1536–43.

    Article  CAS  PubMed  Google Scholar 

  6. Dieci MV, Mathieu MC, Guarneri V, Conte P, Delaloge S, Andre F, et al. Prognostic and predictive value of tumor-infiltrating lymphocytes in two phase III randomized adjuvant breast cancer trials. Ann Oncol. 2015;26(8):1698–704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Perez EA, Ballman KV, Tenner KS, Thompson EA, Badve SS, Bailey H, et al. Association of stromal tumor-infiltrating lymphocytes with recurrence-free survival in the N9831 adjuvant trial in patients with early-stage HER2-positive breast cancer. JAMA oncology. 2016;2(1):56–64.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Loi S, Michiels S, Salgado R, Sirtaine N, Jose V, Fumagalli D, et al. Tumor infiltrating lymphocytes are prognostic in triple negative breast cancer and predictive for trastuzumab benefit in early breast cancer: results from the FinHER trial. Ann Oncol. 2014;25(8):1544–50.

    Article  CAS  PubMed  Google Scholar 

  9. Waterhouse P, Penninger JM, Timms E, Wakeham A, Shahinian A, Lee KP, et al. Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science. 1995;270(5238):985–8.

    Article  CAS  PubMed  Google Scholar 

  10. Tivol EA, Borriello F, Schweitzer AN, Lynch WP, Bluestone JA, Sharpe AH. Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity. 1995;3(5):541–7.

    Article  CAS  PubMed  Google Scholar 

  11. Collins AV, Brodie DW, Gilbert RJ, Iaboni A, Manso-Sancho R, Walse B, et al. The interaction properties of costimulatory molecules revisited. Immunity. 2002;17(2):201–10.

    Article  CAS  PubMed  Google Scholar 

  12. Freeman GJ, Long AJ, Iwai Y, Bourque K, Chernova T, Nishimura H, et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med. 2000;192(7):1027–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Latchman Y, Wood CR, Chernova T, Chaudhary D, Borde M, Chernova I, et al. PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat Immunol. 2001;2(3):261–8.

    Article  CAS  PubMed  Google Scholar 

  14. Francisco LM, Salinas VH, Brown KE, Vanguri VK, Freeman GJ, Kuchroo VK, et al. PD-L1 regulates the development, maintenance, and function of induced regulatory T cells. J Exp Med. 2009;206(13):3015–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Amarnath S, Mangus CW, Wang JC, Wei F, He A, Kapoor V, et al. The PDL1-PD1 axis converts human TH1 cells into regulatory T cells. Sci Transl Med. 2011;3(111):111ra20.

    Article  Google Scholar 

  16. Spranger S, Spaapen RM, Zha Y, Williams J, Meng Y, Ha TT, et al. Up-regulation of PD-L1, IDO, and T(regs) in the melanoma tumor microenvironment is driven by CD8(+) T cells. Sci Transl Med. 2013;5(200):200ra116.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kinter AL, Godbout EJ, McNally JP, Sereti I, Roby GA, O'Shea MA, et al. The common gamma-chain cytokines IL-2, IL-7, IL-15, and IL-21 induce the expression of programmed death-1 and its ligands. J Immunol. 2008;181(10):6738–46.

    Article  CAS  PubMed  Google Scholar 

  18. Mittendorf EA, Philips AV, Meric-Bernstam F, Qiao N, Wu Y, Harrington S, et al. PD-L1 expression in triple-negative breast cancer. Cancer Immunol Res. 2014;2(4):361–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cimino-Mathews A, Thompson E, Taube JM, Ye X, Lu Y, Meeker A, et al. PD-L1 (B7-H1) expression and the immune tumor microenvironment in primary and metastatic breast carcinomas. Hum Pathol. 2016;47(1):52–63.

    Article  CAS  PubMed  Google Scholar 

  20. Schalper KA, Velcheti V, Carvajal D, Wimberly H, Brown J, Pusztai L, et al. In situ tumor PD-L1 mRNA expression is associated with increased TILs and better outcome in breast carcinomas. Clin Cancer Res. 2014;20(10):2773–82.

    Article  CAS  PubMed  Google Scholar 

  21. Guo Y, Yu P, Liu Z, Maimaiti Y, Wang S, Yin X, et al. Prognostic and clinicopathological value of programmed death ligand-1 in breast cancer: a meta-analysis. PLoS One. 2016;11(5):e0156323.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Li X, Wetherilt CS, Krishnamurti U, Yang J, Ma Y, Styblo TM, et al. Stromal PD-L1 expression is associated with better disease-free survival in triple-negative breast cancer. Am J Clin Pathol. 2016 Oct;146(4):496–502.

    Article  PubMed  Google Scholar 

  23. Vonderheide RH, LoRusso PM, Khalil M, Gartner EM, Khaira D, Soulieres D, et al. Tremelimumab in combination with exemestane in patients with advanced breast cancer and treatment-associated modulation of inducible costimulator expression on patient T cells. Clin Cancer Res. 2010 Jul 01;16(13):3485–94.

    Article  CAS  PubMed  Google Scholar 

  24. Nanda R, Chow LQ, Dees EC, Berger R, Gupta S, Geva R, et al. Pembrolizumab in patients with advanced triple-negative breast cancer: phase Ib KEYNOTE-012 study. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2016 Jul 20;34(21):2460–7.

    Article  CAS  Google Scholar 

  25. Adams S, Schmid P, Rugo HS, Winer EP, Loirat D, Awada A, et al. Phase 2 study of pembrolizumab (pembro) monotherapy for previously treated metastatic triple-negative breast cancer (mTNBC): KEYNOTE-086 cohort A. J Clin Oncol. 2017;35(15_suppl):1008.

    Google Scholar 

  26. Adams S, Loi S, Toppmeyer D, Cescon DW, Laurentiis MD, Nanda R, et al. Phase 2 study of pembrolizumab as first-line therapy for PD-L1–positive metastatic triple-negative breast cancer (mTNBC): preliminary data from KEYNOTE-086 cohort B. J Clin Oncol. 2017;35(15_suppl):1088.

    Google Scholar 

  27. Winer EP, Dang T, Karantza V, Su S-C. KEYNOTE-119: a randomized phase III study of single-agent pembrolizumab (MK-3475) vs single-agent chemotherapy per physician’s choice for metastatic triple-negative breast cancer (mTNBC). J Clin Oncol. 2016;34(15_suppl):TPS1102-TPS.

    Google Scholar 

  28. Rugo H, Delord J-P, Im S-A, Ott P, Piha-Paul S, Bedard P, et al. Abstract S5-07: preliminary efficacy and safety of pembrolizumab (MK-3475) in patients with PD-L1–positive, estrogen receptor-positive (ER+)/HER2-negative advanced breast cancer enrolled in KEYNOTE-028. Cancer Res. 2016;76(4 Supplement):S5-07.

    Article  Google Scholar 

  29. Tolaney S, Savulsky C, Aktan G, Xing D, Almonte A, Karantza V, et al. Abstract P5-15-02: phase 1b/2 study to evaluate eribulin mesylate in combination with pembrolizumab in patients with metastatic triple-negative breast cancer. Cancer Res. 2017;77(4 Supplement):P5-15-02.

    Article  Google Scholar 

  30. Nanda R, Liu MC, Yau C, Asare S, Hylton N, Veer LV, et al. Pembrolizumab plus standard neoadjuvant therapy for high-risk breast cancer (BC): results from I-SPY 2. J Clin Oncol. 2017;35(15_suppl):506.

    Google Scholar 

  31. Gennari R, Menard S, Fagnoni F, Ponchio L, Scelsi M, Tagliabue E, et al. Pilot study of the mechanism of action of preoperative trastuzumab in patients with primary operable breast tumors overexpressing HER2. Clin Cancer Res. 2004;10(17):5650–5.

    Article  CAS  PubMed  Google Scholar 

  32. Muller P, Kreuzaler M, Khan T, Thommen DS, Martin K, Glatz K, et al. Trastuzumab emtansine (T-DM1) renders HER2+ breast cancer highly susceptible to CTLA-4/PD-1 blockade. Sci Transl Med. 2015;7(315):315ra188.

    Article  PubMed  Google Scholar 

  33. Loi S, Andre F, Maibach R, Hui R, Bartsch R, Jerusalem G, et al. Abstract OT3-01-05: PANACEA (IBCSG 45-13/BIG 4-13): a phase Ib/II trial evaluating the efficacy of pembrolizumab and trastuzumab in patients with trastuzumab-resistant, HER2-positive, metastatic breast cancer. Cancer Res. 2016;76(4 Supplement):OT3-01-5.

    Google Scholar 

  34. Herbst RS, Soria JC, Kowanetz M, Fine GD, Hamid O, Gordon MS, et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature. 2014;515(7528):563–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Powles T, Eder JP, Fine GD, Braiteh FS, Loriot Y, Cruz C, et al. MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer. Nature. 2014;515(7528):558–62.

    Article  CAS  PubMed  Google Scholar 

  36. Emens LA, Braiteh FS, Cassier P, Delord J-P, Eder JP, Fasso M, et al. Abstract 2859: Inhibition of PD-L1 by MPDL3280A leads to clinical activity in patients with metastatic triple-negative breast cancer (TNBC). Cancer Res. 2015;75(15 Supplement):2859.

    Article  Google Scholar 

  37. Hodi FS, Hwu WJ, Kefford R, Weber JS, Daud A, Hamid O, et al. Evaluation of immune-related response criteria and RECIST v1.1 in patients with advanced melanoma treated with pembrolizumab. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2016;34(13):1510–7.

    Article  CAS  Google Scholar 

  38. Adams S, Diamond JR, Hamilton EP, Pohlmann PR, Tolaney SM, Molinero L, et al. Phase Ib trial of atezolizumab in combination with nab-paclitaxel in patients with metastatic triple-negative breast cancer (mTNBC). J Clin Oncol. 2016;34(15_suppl):1009.

    Google Scholar 

  39. Emens LA, Adams S, Loi S, Schneeweiss A, Rugo HS, Winer EP, et al. IMpassion130: a phase III randomized trial of atezolizumab with nab-paclitaxel for first-line treatment of patients with metastatic triple-negative breast cancer (mTNBC). J Clin Oncol. 2016;34(15_suppl):TPS1104-TPS.

    Google Scholar 

  40. Dirix L, Takacs I, Nikolinakos P, Jerusalem G, Arkenau H-T, Hamilton E, et al. Abstract S1-04: Avelumab (MSB0010718C), an anti-PD-L1 antibody, in patients with locally advanced or metastatic breast cancer: a phase Ib JAVELIN solid tumor trial. Cancer Res. 2016;76(4 Supplement):S1-04.

    Article  Google Scholar 

  41. Postow MA, Callahan MK, Barker CA, Yamada Y, Yuan J, Kitano S, et al. Immunologic correlates of the abscopal effect in a patient with melanoma. N Engl J Med. 2012;366(10):925–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Diab A, Solomon SB, Comstock C, Maybody M, Sacchini V, Durack JC, et al. A pilot study of preoperative (Pre-op), single-dose ipilimumab (Ipi) and/or cryoablation (Cryo) in women (pts) with early-stage/resectable breast cancer (ESBC). J Clin Oncol. 2013;31(26_suppl):67.

    Article  Google Scholar 

  43. Page D, Yuan J, Diab A, Dong Z, Ginsberg A, Wong P, et al. Abstract P2-15-01: Integrated immunologic assessment of tumor infiltrating lymphocytes (TILs) and peripheral blood to assess synergy of cryoablation (cryo) plus ipilimumab (ipi) in early stage breast cancer (ESBC) patients (pts). Cancer Res. 2015;75(9 Supplement):P2-15-01.

    Article  Google Scholar 

  44. Weber JS, Yang JC, Atkins MB, Disis ML. Toxicities of immunotherapy for the practitioner. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2015;33(18):2092–9.

    Article  CAS  Google Scholar 

  45. Weber JS. Practical management of immune-related adverse events from immune checkpoint protein antibodies for the oncologist. American Society of Clinical Oncology educational book American Society of Clinical Oncology Meeting. 2012:174–7.

  46. Postow MA. Managing immune checkpoint-blocking antibody side effects. American Society of Clinical Oncology educational book American Society of Clinical Oncology Meeting. 2015:76–83.

  47. Topalian SL, Taube JM, Anders RA, Pardoll DM. Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat Rev Cancer. 2016;16(5):275–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gopalakrishnan V, Spencer C, Reuben A, Prieto P, Vicente D, Karpinets TV, et al. Abstract 2672: Response to anti-PD-1 based therapy in metastatic melanoma patients is associated with the diversity and composition of the gut microbiome. Cancer Res. 2017;77(13 Supplement):2672.

    Article  Google Scholar 

  49. Wargo JA, Gopalakrishnan V, Spencer C, Karpinets T, Reuben A, Andrews MC, et al. Association of the diversity and composition of the gut microbiome with responses and survival (PFS) in metastatic melanoma (MM) patients (pts) on anti-PD-1 therapy. J Clin Oncol. 2017;35(15_suppl):3008.

    Google Scholar 

  50. van Nood E, Vrieze A, Nieuwdorp M, Fuentes S, Zoetendal EG, de Vos WM, et al. Duodenal infusion of donor feces for recurrent Clostridium difficile. N Engl J Med. 2013;368(5):407–15.

    Article  PubMed  Google Scholar 

  51. Benavides LC, Gates JD, Carmichael MG, Patil R, Holmes JP, Hueman MT, et al. The impact of HER2/neu expression level on response to the E75 vaccine: from U.S. Military Cancer Institute Clinical Trials Group Study I-01 and I-02. Clin Cancer Res. 2009;15(8):2895–904.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rita Nanda.

Ethics declarations

Conflict of Interest

April Swoboda is supported by an institutional K12 award (CA139160).

Rita Nanda is a Cancer Clinical Investigator Team Leadership Award Recipient (awarded by the National Cancer Institute though a supplement to P30CA014599).

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Systemic Therapies

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Swoboda, A., Nanda, R. Immunotherapy Approaches to Breast Cancer. Curr Breast Cancer Rep 9, 227–235 (2017). https://doi.org/10.1007/s12609-017-0252-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12609-017-0252-9

Keywords

Navigation