Skip to main content

Advertisement

Log in

Neoadjuvant Breast Cancer Trials: Translational Research in Drug Development

  • Translational Research (J Gligorov, Section Editor)
  • Published:
Current Breast Cancer Reports Aims and scope Submit manuscript

Abstract

In addition to reducing the size and extent of locally advanced breast cancer tumors, neoadjuvant trials allow for rapid assessment of drug efficacy and could expedite development and approval of treatments for early breast cancer. For these reasons, clinical trials in the neoadjuvant setting are prime opportunities to study translational science, pathologic response, genetic biomarkers, and imaging biomarkers. In this review, we provide a summary of the efforts to identify biomarkers aimed to understand tumor biology and to prognosticate and predict response to neoadjuvant therapy for early breast cancer. We also provide a perspective on how neoadjuvant trials can be used to pursue translational research and drug development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bonadonna G, Valagussa P, Brambilla C, Ferrari L. Preoperative chemotherapy in operable breast cancer. Lancet. 1993;341(8858):1485.

    Article  PubMed  CAS  Google Scholar 

  2. Cameron DA, Anderson ED, Levack P, Hawkins RA, Anderson TJ, Leonard RC, et al. Primary systemic therapy for operable breast cancer—10-year survival data after chemotherapy and hormone therapy. Br J Cancer. 1997;76(8):1099–105.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  3. Mieog JS, van der Hage JA, van de Velde CJ. Preoperative chemotherapy for women with operable breast cancer. Cochrane Database Syst Rev. 2007;2, CD005002.

    PubMed  Google Scholar 

  4. Liedtke C, Mazouni C, Hess KR, Andre F, Tordai A, Mejia JA, et al. Response to neoadjuvant therapy and long-term survival in patients with triple-negative breast cancer. J Clin Oncol Off J Am Soc Clin Oncol. 2008;26(8):1275–81.

    Article  Google Scholar 

  5. Cortazar P, Zhang L, Untch M, Mehta K, Costantino JP, Wolmark N, et al. Pathological complete response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis. Lancet. 2014;384(9938):164–72.

    Article  PubMed  Google Scholar 

  6. US FDA Center for Drug Evaluation and Research. Guidance for industry: pathologic complete response in neoadjuvant treatment of high-risk early-stage breast cancer: use as an endpoint to support accelerated approval. 2012. http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM305501.pdf. Accessed Jun 2015.

  7. Gianni L, Pienkowski T, Im YH, Roman L, Tseng LM, Liu MC, et al. Efficacy and safety of neoadjuvant pertuzumab and trastuzumab in women with locally advanced, inflammatory, or early HER2-positive breast cancer (NeoSphere): a randomised multicentre, open-label, phase 2 trial. Lancet Oncol. 2012;13(1):25–32.

    Article  PubMed  CAS  Google Scholar 

  8. Amiri-Kordestani L, Wedam S, Zhang L, Tang S, Tilley A, Ibrahim A, et al. First FDA approval of neoadjuvant therapy for breast cancer: pertuzumab for the treatment of patients with HER2-positive breast cancer. Clin Cancer Res. 2014;20(21):5359–64.

    Article  PubMed  CAS  Google Scholar 

  9. Ring AE, Smith IE, Ashley S, Fulford LG, Lakhani SR. Oestrogen receptor status, pathological complete response and prognosis in patients receiving neoadjuvant chemotherapy for early breast cancer. Br J Cancer. 2004;91(12):2012–7.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  10. Colleoni M, Viale G, Zahrieh D, Pruneri G, Gentilini O, Veronesi P, et al. Chemotherapy is more effective in patients with breast cancer not expressing steroid hormone receptors: a study of preoperative treatment. Clin Cancer Res. 2004;10(19):6622–8.

    Article  PubMed  CAS  Google Scholar 

  11. Keam B, Im SA, Kim HJ, Oh DY, Kim JH, Lee SH, et al. Prognostic impact of clinicopathologic parameters in stage II/III breast cancer treated with neoadjuvant docetaxel and doxorubicin chemotherapy: paradoxical features of the triple negative breast cancer. BMC Cancer. 2007;7:203.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  12. Petit T, Wilt M, Velten M, Rodier JF, Fricker JP, Dufour P, et al. Semi-quantitative evaluation of estrogen receptor expression is a strong predictive factor of pathological complete response after anthracycline-based neo-adjuvant chemotherapy in hormonal-sensitive breast cancer. Breast Cancer Res Treat. 2010;124(2):387–91.

    Article  PubMed  CAS  Google Scholar 

  13. Symmans WF, Peintinger F, Hatzis C, Rajan R, Kuerer H, Valero V, et al. Measurement of residual breast cancer burden to predict survival after neoadjuvant chemotherapy. J Clin Oncol Off J Am Soc Clin Oncol. 2007;25(28):4414–22.

    Article  Google Scholar 

  14. Ortega EM, Taberner Bonastre M, Morales Murillo S, Iglesias Martinez E, Canosa Morales M, Pon Cladera L, Carceller Vidal JA, Marquez-Medina D, Panades Siurana MJ, Vilardell Villellas F et al.: Primary systemic chemotherapy in stage II-IIIb breast cancer: independent prognostic value of molecular phenotype and the MDACC residual cancer burden—a single-institutional experience. In: ASCO Annual Meeting. Chicago, IL: J Clin Oncol; 2011.

  15. Dowsett M, Smith IE, Ebbs SR, Dixon JM, Skene A, A'Hern R, et al. Prognostic value of Ki67 expression after short-term presurgical endocrine therapy for primary breast cancer. J Natl Cancer Inst. 2007;99(2):167–70.

    Article  PubMed  CAS  Google Scholar 

  16. Dowsett M, Smith IE, Ebbs SR, Dixon JM, Skene A, Griffith C, Boeddinghaus I, Salter J, Detre S, Hills M et al.: Short-term changes in Ki-67 during neoadjuvant treatment of primary breast cancer with anastrozole or tamoxifen alone or combined correlate with recurrence-free survival. Clinical cancer research : an official journal of the American Association for Cancer Research 2005, 11(2 Pt 2):951s-958s.

  17. von Minckwitz G, Schmitt WD, Loibl S, Muller BM, Blohmer JU, Sinn BV, et al. Ki67 measured after neoadjuvant chemotherapy for primary breast cancer. Clinical Cancer Res. 2013;19(16):4521–31.

    Article  CAS  Google Scholar 

  18. Jones RL, Salter J, A'Hern R, Nerurkar A, Parton M, Reis-Filho JS, et al. The prognostic significance of Ki67 before and after neoadjuvant chemotherapy in breast cancer. Breast Cancer Res Treat. 2009;116(1):53–68.

    Article  PubMed  CAS  Google Scholar 

  19. de Azambuja E, Cardoso F, De Castro Jr G, Colozza M, Mano MS, Durbecq V, et al. Ki-67 as prognostic marker in early breast cancer: a meta-analysis of published studies involving 12,155 patients. Br J Cancer. 2007;96(10):1504–13.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  20. Urruticoechea A, Smith IE, Dowsett M. Proliferation marker Ki-67 in early breast cancer. J Clin Oncol Off J Am Soc Clin Oncol. 2005;23(28):7212–20.

    Article  CAS  Google Scholar 

  21. Ellis MJ, Tao Y, Luo J, A'Hern R, Evans DB, Bhatnagar AS, et al. Outcome prediction for estrogen receptor-positive breast cancer based on postneoadjuvant endocrine therapy tumor characteristics. J Natl Cancer Inst. 2008;100(19):1380–8.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  22. Ellis MJ, Ma C. Letrozole in the neoadjuvant setting: the P024 trial. Breast Cancer Res Treat. 2007;105 Suppl 1:33–43.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  23. Howell A, Cuzick J, Baum M, Buzdar A, Dowsett M, Forbes JF, et al. Results of the ATAC (Arimidex, Tamoxifen, Alone or in Combination) trial after completion of 5 years’ adjuvant treatment for breast cancer. Lancet. 2005;365(9453):60–2.

    Article  PubMed  CAS  Google Scholar 

  24. Regan MM, Neven P, Giobbie-Hurder A, Goldhirsch A, Ejlertsen B, Mauriac L, et al. Assessment of letrozole and tamoxifen alone and in sequence for postmenopausal women with steroid hormone receptor-positive breast cancer: the BIG 1–98 randomised clinical trial at 8.1 years median follow-up. Lancet Oncol. 2011;12(12):1101–8.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  25. Ellis MJ, Coop A, Singh B, Mauriac L, Llombert-Cussac A, Janicke F, et al. Letrozole is more effective neoadjuvant endocrine therapy than tamoxifen for ErbB-1- and/or ErbB-2-positive, estrogen receptor-positive primary breast cancer: evidence from a phase III randomized trial. J Clin Oncol Off J Am Soc Clin Oncol. 2001;19(18):3808–16.

    CAS  Google Scholar 

  26. Ellis MJ, Suman VJ, Hoog J, Lin L, Snider J, Prat A, et al. Randomized phase II neoadjuvant comparison between letrozole, anastrozole, and exemestane for postmenopausal women with estrogen receptor-rich stage 2 to 3 breast cancer: clinical and biomarker outcomes and predictive value of the baseline PAM50-based intrinsic subtype—ACOSOG Z1031. J Clin Oncol Off J Am Soc Clin Oncol. 2011;29(17):2342–9.

    Article  CAS  Google Scholar 

  27. Goss PE, Ingle JN, Chapman J, Ellis MJ, Sledge GW, Budd GT, et al. Final analysis of NCIC CTG MA.27: a randomized phase iii trial of exemestane versus anastrozole in postmenopausal women with hormone receptor positive primary breast cancer. In: San Antonio Breast Cancer Symposium. San Antonio, TX: Cancer Research; 2010.

  28. Ellis MJ, Ding L, Shen D, Luo J, Suman VJ, Wallis JW, et al. Whole-genome analysis informs breast cancer response to aromatase inhibition. Nature. 2012;486(7403):353–60.

    PubMed Central  PubMed  CAS  Google Scholar 

  29. Harris L, Fritsche H, Mennel R, Norton L, Ravdin P, Taube S, et al. American Society of Clinical Oncology 2007 update of recommendations for the use of tumor markers in breast cancer. J Clin Oncol Off J Am Soc Clin Oncol. 2007;25(33):5287–312.

    Article  CAS  Google Scholar 

  30. Smith IE, Dowsett M, Ebbs SR, Dixon JM, Skene A, Blohmer JU, et al. Neoadjuvant treatment of postmenopausal breast cancer with anastrozole, tamoxifen, or both in combination: the Immediate Preoperative Anastrozole, Tamoxifen, or Combined with Tamoxifen (IMPACT) multicenter double-blind randomized trial. J Clin Oncol Off J Am Soc Clin Oncol. 2005;23(22):5108–16.

    Article  CAS  Google Scholar 

  31. Schelling M, Avril N, Nahrig J, Kuhn W, Romer W, Sattler D, et al. Positron emission tomography using [(18)F]Fluorodeoxyglucose for monitoring primary chemotherapy in breast cancer. J Clin Oncol Off J Am Soc Clin Oncol. 2000;18(8):1689–95.

    CAS  Google Scholar 

  32. Weber WA. Assessing tumor response to therapy. J Nucl Med. 2009;50 Suppl 1:1S–0.

    Article  PubMed  CAS  Google Scholar 

  33. Gebhart G, Gamez C, Holmes E, Robles J, Garcia C, Cortes M, et al. 18F-FDG PET/CT for early prediction of response to neoadjuvant lapatinib, trastuzumab, and their combination in HER2-positive breast cancer: results from Neo-ALTTO. J Nucl Med. 2013;54(11):1862–8.

    Article  PubMed  CAS  Google Scholar 

  34. Jolles PR, Kostakoglu L, Bear HD, Idowu MO, Kurdziel KA, Shankar L, et al. ACRIN 6688 phase II study of fluorine-18 3′-deoxy-3′ fluorothymidine (FLT) in invasive breast cancer. In: ASCO Annual Meeting. Chicago, IL: J. Clin Oncol; 2011.

  35. Denkert C, Loibl S, Noske A, Roller M, Muller BM, Komor M, et al. Tumor-associated lymphocytes as an independent predictor of response to neoadjuvant chemotherapy in breast cancer. J Clin Oncol Off J Am Soc Clin Oncol. 2010;28(1):105–13.

    Article  CAS  Google Scholar 

  36. Yamaguchi R, Tanaka M, Yano A, Tse GM, Yamaguchi M, Koura K, et al. Tumor-infiltrating lymphocytes are important pathologic predictors for neoadjuvant chemotherapy in patients with breast cancer. Hum Pathol. 2012;43(10):1688–94.

    Article  PubMed  CAS  Google Scholar 

  37. Ono M, Tsuda H, Shimizu C, Yamamoto S, Shibata T, Yamamoto H, et al. Tumor-infiltrating lymphocytes are correlated with response to neoadjuvant chemotherapy in triple-negative breast cancer. Breast Cancer Res Treat. 2012;132(3):793–805.

    Article  PubMed  CAS  Google Scholar 

  38. West NR, Milne K, Truong PT, Macpherson N, Nelson BH, Watson PH. Tumor-infiltrating lymphocytes predict response to anthracycline-based chemotherapy in estrogen receptor-negative breast cancer. Breast Cancer Res. 2011;13(6):R126.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  39. Oda N, Shimazu K, Naoi Y, Morimoto K, Shimomura A, Shimoda M, et al. Intratumoral regulatory T cells as an independent predictive factor for pathological complete response to neoadjuvant paclitaxel followed by 5-FU/epirubicin/cyclophosphamide in breast cancer patients. Breast Cancer Res Treat. 2012;136(1):107–16.

    Article  PubMed  CAS  Google Scholar 

  40. Issa-Nummer Y, Darb-Esfahani S, Loibl S, Kunz G, Nekljudova V, Schrader I, et al. Prospective validation of immunological infiltrate for prediction of response to neoadjuvant chemotherapy in HER2-negative breast cancer--a substudy of the neoadjuvant GeparQuinto trial. PLoS One. 2013;8(12), e79775.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  41. Adams S, Gray RJ, Demaria S, Goldstein L, Perez EA, Shulman LN, et al. Prognostic value of tumor-infiltrating lymphocytes in triple-negative breast cancers from two phase III randomized adjuvant breast cancer trials: ECOG 2197 and ECOG 1199. J Clin Oncol Off J Am Soc Clin Oncol. 2014;32(27):2959–66.

    Article  Google Scholar 

  42. Loi S, Michiels S, Salgado R, Sirtaine N, Jose V, Fumagalli D, et al. Tumor infiltrating lymphocytes are prognostic in triple negative breast cancer and predictive for trastuzumab benefit in early breast cancer: results from the FinHER trial. Ann Oncol. 2014;25(8):1544–50.

    Article  PubMed  CAS  Google Scholar 

  43. Loi S, Sirtaine N, Piette F, Salgado R, Viale G, Van Eenoo F, et al. Prognostic and predictive value of tumor-infiltrating lymphocytes in a phase III randomized adjuvant breast cancer trial in node-positive breast cancer comparing the addition of docetaxel to doxorubicin with doxorubicin-based chemotherapy: BIG 02–98. J Clin Oncol Off J Am Soc Clin Oncol. 2013;31(7):860–7.

    Article  CAS  Google Scholar 

  44. Ladoire S, Arnould L, Apetoh L, Coudert B, Martin F, Chauffert B, et al. Pathologic complete response to neoadjuvant chemotherapy of breast carcinoma is associated with the disappearance of tumor-infiltrating foxp3+ regulatory T cells. Clin Cancer Res. 2008;14(8):2413–20.

    Article  PubMed  CAS  Google Scholar 

  45. Ladoire S, Mignot G, Dabakuyo S, Arnould L, Apetoh L, Rebe C, et al. In situ immune response after neoadjuvant chemotherapy for breast cancer predicts survival. J Pathol. 2011;224(3):389–400.

    Article  PubMed  CAS  Google Scholar 

  46. Aruga T, Suzuki E, Saji S, Horiguchi S, Horiguchi K, Sekine S, et al. A low number of tumor-infiltrating FOXP3-positive cells during primary systemic chemotherapy correlates with favorable anti-tumor response in patients with breast cancer. Oncol Rep. 2009;22(2):273–8.

    PubMed  CAS  Google Scholar 

  47. Dieci MV, Criscitiello C, Goubar A, Viale G, Conte P, Guarneri V, et al. Prognostic value of tumor-infiltrating lymphocytes on residual disease after primary chemotherapy for triple-negative breast cancer: a retrospective multicenter study. Ann Oncol. 2014;25(3):611–8.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  48. Salgado R, Denkert C, Campbell C, Savas P, Nucifero P, Aura C, et al.: Tumor-infiltrating lymphocytes and associations with pathological complete response and event-free survival in her2-positive early-stage breast cancer treated with lapatinib and trastuzumab A secondary analysis of the NeoALTTO Trial. Jama Oncology 2015, 10.1001.

  49. Perez EA, Ballman K, Anderson S. Stromal tumor-infilatating lymphocytes (S-TILs): in the Alliance N9831 trial S-TILSs are associated with chemotherapy benfit but not associated with trastuzumab benefit. In: San Antonio Breast Cancer Symposium. 2014.

  50. Salgado R, Denkert C, Demaria S, Sirtaine N, Klauschen F, Pruneri G, et al. The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: recommendations by an International TILs Working Group 2014. Ann Oncol. 2015;26(2):259–71.

    Article  PubMed  CAS  Google Scholar 

  51. Sabatier R, Finetti P, Mamessier E, Adelaide J, Chaffanet M, Ali HR, et al. Prognostic and predictive value of PDL1 expression in breast cancer. Oncotarget. 2015;6(7):5449–64.

    PubMed Central  PubMed  Google Scholar 

  52. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, et al. Molecular portraits of human breast tumours. Nature. 2000;406(6797):747–52.

    Article  PubMed  CAS  Google Scholar 

  53. Cancer Genome Atlas N. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490(7418):61–70.

    Article  CAS  Google Scholar 

  54. Ayers M, Symmans WF, Stec J, Damokosh AI, Clark E, Hess K, et al. Gene expression profiles predict complete pathologic response to neoadjuvant paclitaxel and fluorouracil, doxorubicin, and cyclophosphamide chemotherapy in breast cancer. J Clin Oncol Off J Am Soc Clin Oncol. 2004;22(12):2284–93.

    Article  CAS  Google Scholar 

  55. Gianni L, Zambetti M, Clark K, Baker J, Cronin M, Wu J, et al. Gene expression profiles in paraffin-embedded core biopsy tissue predict response to chemotherapy in women with locally advanced breast cancer. J Clin Oncol Off J Am Soc Clin Oncol. 2005;23(29):7265–77.

    Article  CAS  Google Scholar 

  56. Prat A, Bianchini G, Thomas M, Belousov A, Cheang MC, Koehler A, et al. Research-based PAM50 subtype predictor identifies higher responses and improved survival outcomes in HER2-positive breast cancer in the NOAH study. Clin Cancer Res. 2014;20(2):511–21.

    Article  PubMed  CAS  Google Scholar 

  57. Carey L, Berry DA, Ollila D, Harris L, Krop IE, Weckstein D, et al. Clinical and translational results of CALGB 40601: A neoadjuvant phase III trial of weekly paclitaxel and trastuzumab with or without lapatinib for HER2-positive breast cancer. In: ASCO Annual Meeting. Chicago, IL: J Clin Oncol; 2013.

  58. Sikov WM, Barry WT, Hoadley KA, Pitcher NB, Singh B, Tolaney SM, et al. Impact of intrinsic subtype by PAM50 and other gene signatures on pathologic complete response (pCR) rates in triple-negative breast cancer (TNBC) after neoadjuvant chemotherapy (NACT) +/− carboplatin (Cb) or bevacizumab (Bev): CALGB 40603/150709 (Alliance). In: San Antonio Breast Cancer Symposium. San Antonio, Tx: Cancer Research; 2014.

  59. Dave B, Migliaccio I, Gutierrez MC, Wu MF, Chamness GC, Wong H, et al. Loss of phosphatase and tensin homolog or phosphoinositol-3 kinase activation and response to trastuzumab or lapatinib in human epidermal growth factor receptor 2-overexpressing locally advanced breast cancers. J Clin Oncol. 2011;29(2):166–73.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  60. Loibl S, von Minckwitz G, Schneeweiss A, Paepke S, Lehmann A, Rezai M, et al. PIK3CA mutations are associated with lower rates of pathologic complete response to anti-human epidermal growth factor receptor 2 (her2) therapy in primary HER2-overexpressing breast cancer. J Clin Oncol Off J Am Soc Clin Oncol. 2014;32(29):3212–20.

    Article  CAS  Google Scholar 

  61. Jiang YZ, Yu KD, Bao J, Peng WT, Shao ZM. Favorable prognostic impact in loss of TP53 and PIK3CA mutations after neoadjuvant chemotherapy in breast cancer. Cancer Res. 2014;74(13):3399–407.

    Article  PubMed  CAS  Google Scholar 

  62. Wang C, Zhang J, Wang Y, Ouyang T, Li J, Wang T, et al. Prevalence of BRCA1 mutations and responses to neoadjuvant chemotherapy among BRCA1 carriers and non-carriers with triple-negative breast cancer. Ann Oncol. 2015;26(3):523–8.

    Article  PubMed  CAS  Google Scholar 

  63. Telli ML, Jensen KC, Kurian AW, Vinayak S, Lipson JA, Schackmann EA, et al. PrECOG 0105: Final efficacy results from a phase II study of gemcitabine (G) and carboplatin (C) plus iniparib (BSI-201) as neoadjuvant therapy for triple-negative (TN) and BRCA1/2 mutation-associated breast cancer. In: ASCO Annual Meeting. Chicago, IL: J Clin Oncol; 2013.

  64. Arun B, Bayraktar S, Liu DD, Gutierrez Barrera AM, Atchley D, Pusztai L, et al. Response to neoadjuvant systemic therapy for breast cancer in BRCA mutation carriers and noncarriers: a single-institution experience. J Clin Oncol Off J Am Soc Clin Oncol. 2011;29(28):3739–46.

    Article  CAS  Google Scholar 

  65. Von Minckwitz G, Hahnen E, Fasching PA, Hauke J, Schneeweiss A, Salat C, et al. Pathological complete response (pCR) rates after carboplatin-containing neoadjuvant chemotherapy in patients with germline BRCA (gBRCA) mutation and triple-negative breast cancer (TNBC): results from GeparSixto. In: ASCO Annual Meeting: 2014; Chicago, IL: J Clin Oncol; 2014.

  66. Byrski T, Huzarski T, Dent R, Marczyk E, Jasiowka M, Gronwald J, et al. Pathologic complete response to neoadjuvant cisplatin in BRCA1-positive breast cancer patients. Breast Cancer Res Treat. 2014;147(2):401–5.

    Article  PubMed  CAS  Google Scholar 

  67. Muller V, Gade S, Steinbach B, Loibl S, von Minckwitz G, Untch M, et al. Changes in serum levels of miR-21, miR-210, and miR-373 in HER2-positive breast cancer patients undergoing neoadjuvant therapy: a translational research project within the Geparquinto trial. Breast Cancer Res Treat. 2014;147(1):61–8.

    Article  PubMed  CAS  Google Scholar 

  68. Beaver JA, Jelovac D, Balukrishna S, Cochran RL, Croessmann S, Zabransky DJ, et al. Detection of cancer DNA in plasma of patients with early-stage breast cancer. Clin Cancer Res. 2014;20(10):2643–50.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  69. Turner NC, Garcia-Murillas I, Schiavon G, Hrebien S, Orsin P, Nerurkar A, et al. Tracking tumor-specific mutations in circulating-free DNA to predict early relapse after treatment of primary breast cancer. In: ASCO Annual Meeting. Chicago, IL: J Clin Oncol.

  70. Teutsch SM, Bradley LA, Palomaki GE, Haddow JE, Piper M, Calonge N, et al. The evaluation of genomic applications in practice and prevention (EGAPP) initiative: methods of the EGAPP working group. Genet Med. 2009;11(1):3–14.

    Article  PubMed Central  PubMed  Google Scholar 

  71. Simon RM, Paik S, Hayes DF. Use of archived specimens in evaluation of prognostic and predictive biomarkers. J Natl Cancer Inst. 2009;101(21):1446–52.

    Article  PubMed Central  PubMed  Google Scholar 

  72. US FDA Center for Devices and Radiological Health. In vitro companion diagnostic devices: guidance for industry and Food and Drug Administration staff. In.; 2014. http://www.fda.gov/ucm/groups/fdagov-public/@fdagov-meddev-gen/documents/document/ucm262327.pdf.

  73. Harmonizing companion diagnostics across a class of targeted therapies: complexities in personalized medicine workshop. Washington, D.C.; 2015. http://www.fda.gov/MedicalDevices/NewsEvents/WorkshopsConferences/ucm436716.htm#materials.

  74. Alonzo TA. Standards for reporting prognostic tumor marker studies. J Clin Oncol Off J Am Soc Clin Oncol. 2005;23(36):9053–4.

    Article  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Julia A. Beaver, Laleh Amiri-Kordestani, Reena Philip, and Patricia Cortazar declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia Cortazar.

Additional information

This article is part of the Topical Collection on Translational Research

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beaver, J.A., Amiri-Kordestani, L., Philip, R. et al. Neoadjuvant Breast Cancer Trials: Translational Research in Drug Development. Curr Breast Cancer Rep 7, 151–160 (2015). https://doi.org/10.1007/s12609-015-0183-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12609-015-0183-2

Keywords

Navigation