Skip to main content

Advertisement

Log in

Breast Cancer Biomarkers: Utility in Clinical Practice

  • Biomarkers (S Dawood, Section Editor)
  • Published:
Current Breast Cancer Reports Aims and scope Submit manuscript

Abstract

Breast cancer is a heterogeneous disease. For the past decades, new technical tools have been developed for biomarkers at the DNA, RNA, and protein levels to better understand the biology of breast cancer. This progress is essential to classify the disease into clinically relevant subtypes, which may lead to new therapeutic opportunities. Novel biomarker development is paramount to deliver personalized cancer therapies. Further, tumor evolution, being natural or under treatment pressure, should be monitored and “liquid biopsies” by detecting circulating tumor cells or circulating free tumor DNA in blood samples will become an important option. This article reviews the new generation of biomarkers and the current evidence to demonstrate their analytical validity, clinical validity and clinical utility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Čufer T. Which tools can I use in daily clinical practice to improve tailoring of treatment for breast cancer? The 2007 St Gallen guidelines and/or Adjuvant! Online. Ann Oncol. 2008;19:vii41–5.

    Article  PubMed  Google Scholar 

  2. Guiu S, Michiels S, André F, et al. Molecular subclasses of breast cancer: how do we define them? The IMPAKT 2012 Working Group Statement. Ann Oncol. 2012;23:2997–3006.

    Article  PubMed  CAS  Google Scholar 

  3. Ramsey SD, Barlow WE, Gonzalez-Angulo AM, et al. Integrating comparative effectiveness design elements and endpoints into a phase III, randomized clinical trial (SWOG S1007) evaluating OncotypeDX-guided management for women with breast cancer involving lymph nodes. Contemp Clin Trials. 2013;34:1–9.

    Article  PubMed  Google Scholar 

  4. Paik S, Shak S, Tang G, et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med. 2004;351:2817–26.

    Article  PubMed  CAS  Google Scholar 

  5. Harris L, Fritsche H, Mennel R, et al. American Society of Clinical Oncology 2007 update of recommendations for the use of tumor markers in breast cancer. J Clin Oncol. 2007;25:5287–312.

    Article  PubMed  CAS  Google Scholar 

  6. Anon. National Comprehensive Cancer Network Practice Guidelines in Oncology. Breast Cancer (version v3.2012, May 2013). Available at http://www.nccn.org.

  7. Aebi S, Davidson T, Gruber G, Castiglione M. Primary breast cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2010;21:v9–v14.

    Article  PubMed  Google Scholar 

  8. Habel LA, Shak S, Jacobs MK, et al. A population-based study of tumor gene expression and risk of breast cancer death among lymph node-negative patients. Breast Cancer Res. 2006;8:R25.

    Article  PubMed  Google Scholar 

  9. Paik S. Expression of the 21 genes in the Recurrence Score assay and tamoxifen clinical benefit in the NSABP study B-14 of node negative, estrogen receptor positive breast cancer [abstract 510]. Presented at the 2005 ASCO Annual Meeting.

  10. Paik S, Tang G, Shak S, et al. Gene expression and benefit of chemotherapy in women with node-negative, estrogen receptor-positive breast cancer. J Clin Oncol. 2006;24:3726–34.

    Article  PubMed  CAS  Google Scholar 

  11. • Dowsett M, Cuzick J, Wale C, et al. Prediction of risk of distant recurrence using the 21-Gene Recurrence Score in Node-negative and node-positive postmenopausal patients with breast cancer treated with anastrozole or tamoxifen: a TransATAC Study. J Clin Oncol. 2010;28:1829–34. Prognostic value of 21 gene-Recurrence Score in both node negative and positive EBC.

  12. Albain KS, Barlow WE, Shak S, et al. Prognostic and predictive value of the 21-gene recurrence score assay in postmenopausal women with node-positive, oestrogen-receptor-positive breast cancer on chemotherapy: a retrospective analysis of a randomized trial. Lancet Oncol. 2010;11:55–65.

    Article  PubMed  CAS  Google Scholar 

  13. Bryant J. OncotypeDx correlates more closely with prognosis than Adjuvant Online. Presented at the 9th International Conference on Primary Therapy of Early Breast Cancer. In: St Gallen, Switzerland. 2005.

  14. Kelly CM, Bernard PS, Krishnamurthy S, et al. Agreement in risk prediction between the 21-gene recurrence score assay (Oncotype DX) and the PAM50 breast cancer intrinsic Classifier in early-stage estrogen receptor-positive breast cancer. Oncologist. 2012;17:492–8.

    Article  PubMed  Google Scholar 

  15. Albanell J, González A, Ruiz-Borrego M, et al. Prospective transGEICAM study of the impact of the 21-gene Recurrence Score assay and traditional clinicopathological factors on adjuvant clinical decision making in women with estrogen receptor-positive (ER+) node-negative breast cancer. Ann Oncol. 2012;23:625–31.

    Article  PubMed  CAS  Google Scholar 

  16. Eiermann W, Rezai M, Kümmel S, et al. The 21-gene recurrence score assay impacts adjuvant therapy recommendations for ER-positive, node-negative and node-positive early breast cancer resulting in a risk-adapted change in chemotherapy use. Ann Oncol. 2013;24:618–24.

    Article  PubMed  CAS  Google Scholar 

  17. Sparano JA, Paik S. Development of the 21-Gene Assay and its application in clinical practice and clinical trials. J Clin Oncol. 2008;26:721–8.

    Article  PubMed  Google Scholar 

  18. ClinicalTrials.gov. Hormone therapy with or without combination chemotherapy in treating women who have undergone surgery for node-negative breast cancer (The TAILORx Trial). Clin NCT00310180.

  19. Van de Vijver MJ, He YD, van’t Veer LJ, et al. A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med. 2002;347:1999–2009.

    Article  PubMed  Google Scholar 

  20. van’t Veer LJ, Dai H, van de Vijver MJ, et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature. 2002;415:530–6.

    Article  Google Scholar 

  21. Buyse M, Loi S, van’t Veer L, et al. Validation and clinical utility of a 70-gene prognostic signature for women with node-negative breast cancer. J Natl Cancer Inst. 2006;98:1183–92.

    Article  PubMed  CAS  Google Scholar 

  22. Bueno-de-Mesquita JM, van Harten WH, Retel VP, et al. Use of 70-gene signature to predict prognosis of patients with node-negative breast cancer: a prospective community-based feasibility study (RASTER). Lancet Oncol. 2007;8:1079–87.

    Article  PubMed  CAS  Google Scholar 

  23. Bueno-de-Mesquita JM, Sonke GS, van de Vijver MJ, Linn SC. Additional value and potential use of the 70-gene prognosis signature in node-negative breast cancer in daily clinical practice. Ann Oncol. 2011;22:2021–30.

    Article  PubMed  CAS  Google Scholar 

  24. Knauer M, Mook S, Rutgers EJT, et al. The predictive value of the 70-gene signature for adjuvant chemotherapy in early breast cancer. Breast Cancer Res Treat. 2010;120:655–61.

    Article  PubMed  CAS  Google Scholar 

  25. Straver ME, Glas AM, Hannemann J, et al. The 70-gene signature as a response predictor for neoadjuvant chemotherapy in breast cancer. Breast Cancer Res Treat. 2010;119:551–8.

    Article  PubMed  Google Scholar 

  26. Rutgers E, Piccart-Gebhart MJ, Bogaerts J, et al. The EORTC 10041/BIG 03-04 MINDACT trial is feasible: results of the pilot phase. Eur J Cancer. 2011;47:2742–9.

    Article  PubMed  Google Scholar 

  27. ClinicalTrials.gov. Genetic testing or clinical assessment in determining the need for chemotherapy in women with breast cancer that involves no more than 3 lymph nodes. Clin NCT00433589.

  28. Sørlie T, Perou CM, Tibshirani R, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A. 2001;98:10869–74.

    Article  PubMed  Google Scholar 

  29. Parker JS, Mullins M, Cheang MCU, et al. Supervised risk predictor of breast cancer based on intrinsic subtypes. J Clin Oncol. 2009;27:1160–7.

    Article  PubMed  Google Scholar 

  30. Esserman LJ, Berry DA, Cheang MCU, et al. Chemotherapy response and recurrence-free survival in neoadjuvant breast cancer depends on biomarker profiles: results from the I-SPY 1 TRIAL (CALGB 150007/150012;ACRIN 6657). Breast Cancer Res Treat. 2012;132:1049–62.

    Article  PubMed  CAS  Google Scholar 

  31. Denkert C, Kronenwett R, Schlake W, et al. Decentral gene expression analysis for ER+/Her2- breast cancer: results of a proficiency testing program for the EndoPredict assay. Virchows Arch Int J Pathol. 2012;460:251–9.

    Article  CAS  Google Scholar 

  32. Filipits M, Rudas M, Jakesz R, et al. A new molecular predictor of distant recurrence in ER-positive, HER2-negative breast cancer adds independent information to conventional clinical risk factors. Clin Cancer Res. 2011;17:6012–20.

    Article  PubMed  CAS  Google Scholar 

  33. Müller BM, Keil E, Lehmann A, et al. The EndoPredict Gene-Expression Assay in clinical practice - performance and impact on clinical decisions. PloS ONE. 2013;8:e68252.

    Article  PubMed  Google Scholar 

  34. Jankowitz RC, Cooper K, Erlander MG, et al. Prognostic utility of the breast cancer index and comparison to Adjuvant! Online in a clinical case series of early breast cancer. Breast Cancer Res. 2011;13:R98.

    Article  PubMed  CAS  Google Scholar 

  35. Jerevall P-L, Ma X-J, Li H, et al. Prognostic utility of HOXB13:IL17BR and molecular grade index in early-stage breast cancer patients from the Stockholm trial. Br J Cancer. 2011;104:1762–9.

    Article  PubMed  CAS  Google Scholar 

  36. Mathieu MC, Mazouni C, Kesty NC, et al. Breast Cancer Index predicts pathological complete response and eligibility for breast conserving surgery in breast cancer patients treated with neoadjuvant chemotherapy. Ann Oncol. 2012;23:2046–52.

    Article  PubMed  CAS  Google Scholar 

  37. Azim Jr HA, Michiels S, Zagouri F, et al. Utility of prognostic genomic tests in breast cancer practice: the IMPAKT 2012 Working Group Consensus Statement. Ann Oncol. 2013;24:647–54.

    Article  PubMed  Google Scholar 

  38. Sotiriou C, Wirapati P, Loi S, et al. Gene expression profiling in breast cancer: understanding the molecular basis of histologic grade to improve prognosis. J Natl Cancer Inst. 2006;98:262–72.

    Article  PubMed  CAS  Google Scholar 

  39. Naoi Y, Kishi K, Tanei T, et al. High genomic grade index associated with poor prognosis for lymph node-negative and estrogen receptor-positive breast cancers and with good response to chemotherapy. Cancer. 2011;117:472–9.

    Article  PubMed  CAS  Google Scholar 

  40. Liedtke C, Hatzis C, Symmans WF, et al. Genomic grade index is associated with response to chemotherapy in patients with breast cancer. J Clin Oncol. 2009;27:3185–91.

    Article  PubMed  Google Scholar 

  41. Bartlett JM, Thomas J, Ross DT, et al. Mammostrat as a tool to stratify breast cancer patients at risk of recurrence during endocrine therapy. Breast Cancer Res. 2010;12:R47.

    Article  PubMed  Google Scholar 

  42. Bartlett JMS, Bloom KJ, Piper T, et al. Mammostrat as an immunohistochemical multigene assay for prediction of early relapse risk in the tamoxifen vs exemestane adjuvant multicenter trial pathology study. J Clin Oncol. 2012;30:4477–84.

    Article  PubMed  CAS  Google Scholar 

  43. Ross DT, Kim C-Y, Tang G, et al. Chemosensitivity and stratification by a Five Monoclonal Antibody Immunohistochemistry Test in the NSABP B14 and B20 Trials. Clin Cancer Res. 2008;14:6602–9.

    Article  PubMed  CAS  Google Scholar 

  44. Cuzick J, Dowsett M, Pineda S, et al. Prognostic value of a combined estrogen receptor, progesterone receptor, Ki-67, and human epidermal growth factor receptor 2 immunohistochemical score and comparison with the Genomic Health recurrence score in early breast cancer. J Clin Oncol. 2011;29:4273–8.

    Article  PubMed  Google Scholar 

  45. Dowsett M, Nielsen TO, A’Hern R, et al. Assessment of Ki67 in breast cancer: recommendations from the International Ki67 in Breast Cancer Working Group. J Natl Cancer Inst. 2011;103:1656–64.

    Article  PubMed  CAS  Google Scholar 

  46. •• Bonnefoi H, Piccart M, Bogaerts J, et al. TP53 status for prediction of sensitivity to taxane vs nontaxane neoadjuvant chemotherapy in breast cancer (EORTC 10994/BIG 1-00): a randomized phase 3 trial. Lancet Oncol. 2011;12:527–39. TP53 not predictive of taxanes sensitivity.

  47. Fernández-Cuesta L, Oakman C, Falagan-Lotsch P, et al. Prognostic and predictive value of TP53 mutations in node-positive breast cancer patients treated with anthracycline- or anthracycline/taxane-based adjuvant therapy: results from the BIG 02-98 phase III trial. Breast Cancer Res. 2012;14:R70.

    Article  PubMed  Google Scholar 

  48. Press MF, Sauter G, Buyse M, et al. Alteration of Topoisomerase II-Alpha Gene in human breast cancer: association with responsiveness to anthracycline-based chemotherapy. J Clin Oncol. 2010;29:859–67.

    Article  PubMed  Google Scholar 

  49. Slamon D, Eiermann W, Robert N, et al. Adjuvant trastuzumab in HER2-positive breast cancer. N Engl J Med. 2011;365:1273–83.

    Article  PubMed  CAS  Google Scholar 

  50. Romero A, Martín M, Cheang MCU, et al. Assessment of Topoisomerase II α status in breast cancer by quantitative PCR, gene expression microarrays, immunohistochemistry, and fluorescence in situ hybridization. Am J Pathol. 2011;178:1453–60.

    Article  PubMed  Google Scholar 

  51. •• Desmedt C, Di Leo A, de Azambuja E, et al. Multifactorial approach to predicting resistance to anthracyclines. J Clin Oncol. 2011;29:1578–86. A-Score to predict anthracycline sensitivity.

  52. Harbeck N, Schmitt M, Meisner C, et al. Ten-year analysis of the prospective multicentre Chemo-N0 trial validates American Society of Clinical Oncology (ASCO)-recommended biomarkers uPA and PAI-1 for therapy decision making in node-negative breast cancer patients. Eur J Cancer. 2013;49:1825–35. 1990.

    Article  PubMed  CAS  Google Scholar 

  53. • Regan MM, Leyland-Jones B, Bouzyk M, et al. CYP2D6 genotype and tamoxifen response in postmenopausal women with endocrine-responsive breast cancer: the Breast International Group 1-98 trial. J Natl Cancer Inst. 2012;104:441–51. CYP2D6 metabolism phenotype not predictive of outcomes in a tamoxifen-treated population.

  54. ClinicalTrials.gov. Tamoxifen Citrate, letrozole, anastrozole, or exemestane with or without chemotherapy in treating patients with invasive RxPONDER. Breast Cancer. Clin NCT01272037.

  55. Byrski T, Gronwald J, Huzarski T, et al. Pathologic complete response rates in young women with BRCA1-positive breast cancers after neoadjuvant chemotherapy. J Clin Oncol. 2010;28:375–9.

    Article  PubMed  CAS  Google Scholar 

  56. Arun B, Bayraktar S, Liu DD, et al. Response to neoadjuvant systemic therapy for breast cancer in BRCA mutation carriers and noncarriers: a single-institution experience. J Clin Oncol. 2011;29:3739–46.

    Article  PubMed  CAS  Google Scholar 

  57. ClinicalTrials.gov. Carboplatin or docetaxel in treating women with metastatic genetic breast cancer. Clin NCT00321633.

  58. Lindstrom LS, Karlsson E, Wilking UM, et al. Clinically used breast cancer markers such as estrogen receptor, progesterone receptor, and Human Epidermal Growth Factor Receptor 2 are unstable throughout tumor progression. J Clin Oncol. 2012;30:2601–8.

    Article  PubMed  Google Scholar 

  59. Dieci MV, Barbieri E, Piacentini F, et al. Discordance in receptor status between primary and recurrent breast cancer has a prognostic impact: a single-institution analysis. Ann Oncol. 2012;24:101–8.

    Article  PubMed  Google Scholar 

  60. Simmons C, Miller N, Geddie W, et al. Does confirmatory tumor biopsy alter the management of breast cancer patients with distant metastases? Ann Oncol. 2009;20:1499–504.

    Article  PubMed  CAS  Google Scholar 

  61. Liedtke C, Broglio K, Moulder S, et al. Prognostic impact of discordance between triple-receptor measurements in primary and recurrent breast cancer. Ann Oncol. 2009;20:1953–8.

    Article  PubMed  CAS  Google Scholar 

  62. Niikura N, Liu J, Hayashi N, et al. Loss of Human Epidermal Growth Factor Receptor 2 (HER2) expression in metastatic sites of HER2-overexpressing primary breast tumors. J Clin Oncol. 2011;30:593–9.

    Article  PubMed  Google Scholar 

  63. de Dueñas EM, Lluch A, Guerrero A, et al. Prospective evaluation of the conversion rate of  HER2, ER and PR between primary tumors and corresponding metastases. CONVERTHER/GEICAM 2009-03 Study. [Poster P2-12-17]. Presented at SABCS 2011. Cancer Res. 2011;71(24 Suppl).

  64. Amir E, Miller N, Geddie W, et al. Prospective study evaluating the impact of tissue confirmation of metastatic disease in patients with breast cancer. J Clin Oncol. 2011;30:587–92.

    Article  PubMed  Google Scholar 

  65. Thompson AM, Jordan LB, Quinlan P, et al. Prospective comparison of switches in biomarker status between primary and recurrent breast cancer: the Breast Recurrence In Tissues Study (BRITS). Breast Cancer Res. 2010;12:R92.

    Article  PubMed  Google Scholar 

  66. Gonzalez-Angulo AM, Ferrer-Lozano J, Stemke-Hale K, et al. PI3K Pathway mutations and PTEN levels in primary and metastatic breast cancer. Mol Cancer Ther. 2011;10:1093–101.

    Article  PubMed  CAS  Google Scholar 

  67. Pusztai L, Mattair D, Ueno NT, et al. Breast cancer evaluation and targeted investigational therapy (BEAT-IT): a pilot prospective tissue testing to guide clinical trial selection. J Clin Oncol. 2013;31 Suppl 15 Abstract 532.

  68. •• Andre F, Bachelot TD, Campone M, et al. Array CGH and DNA sequencing to personalize targeted treatment of metastatic breast cancer (MBC) patients (pts): a prospective multicentric trial (SAFIR01). J Clin Oncol. 2013;31 Suppl 15 Abstract 511. First whole genome assays on metastatic breast cancer biopsy to identify genomic alterations potentially targeted by new treatment, in a prospective study.

  69. Gerlinger M, Rowan AJ, Horswell S, et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med. 2012;366:883–92.

    Article  PubMed  CAS  Google Scholar 

  70. Robertson EG, Baxter G. Tumour seeding following percutaneous needle biopsy: the real story! Clin Radiol. 2011;66:1007–14.

    Article  PubMed  CAS  Google Scholar 

  71. Hompes D, Ruers T. Review: incidence and clinical significance of Bevacizumab-related nonsurgical and surgical serious adverse events in metastatic colorectal cancer. Eur J Surg Oncol. 2011;37:737–46.

    Article  PubMed  CAS  Google Scholar 

  72. Kling J. Beyond counting tumor cells. Nat Biotechnol. 2012;30:578–80.

    Article  PubMed  CAS  Google Scholar 

  73. Cristofanilli M, Budd GT, Ellis MJ, et al. Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N Engl J Med. 2004;351:781–91.

    Article  PubMed  CAS  Google Scholar 

  74. Pierga J-Y, Hajage D, Bachelot T, et al. High independent prognostic and predictive value of circulating tumor cells compared with serum tumor markers in a large prospective trial in first-line chemotherapy for metastatic breast cancer patients. Ann Oncol. 2012;23:618–24.

    Article  PubMed  Google Scholar 

  75. Zhang L, Riethdorf S, Wu G, et al. Meta-analysis of the prognostic value of circulating tumor cells in breast cancer. Clin Cancer Res. 2012;18:5701–10.

    Article  PubMed  Google Scholar 

  76. Hartkopf AD, Wagner P, Wallwiener D, Fehm T, Rothmund R. Changing levels of circulating tumor cells in monitoring chemotherapy response in patients with metastatic breast cancer. Anticancer Res. 2011;31:979–84.

    PubMed  Google Scholar 

  77. Giuliano M, Giordano A, Jackson S, et al. Circulating tumor cells as prognostic and predictive markers in metastatic breast cancer patients receiving first-line systemic treatment. Breast Cancer Res. 2011;13:R67.

    Article  PubMed  Google Scholar 

  78. Giordano A, Giuliano M, De Laurentiis M, et al. Circulating tumor cells in immunohistochemical subtypes of metastatic breast cancer: lack of prediction in HER2-positive disease treated with targeted therapy. Ann Oncol. 2012;23:1144–50.

    Article  PubMed  CAS  Google Scholar 

  79. Fehm T, Müller V, Aktas B, et al. HER2 status of circulating tumor cells in patients with metastatic breast cancer: a prospective, multicenter trial. Breast Cancer Res Treat. 2010;124:403–12.

    Article  PubMed  CAS  Google Scholar 

  80. Somlo G, Lau SK, Frankel P, et al. Multiple biomarker expression on circulating tumor cells in comparison to tumor tissues from primary and metastatic sites in patients with locally advanced/inflammatory, and stage IV breast cancer, using a novel detection technology. Breast Cancer Res Treat. 2011;128:155–63.

    Article  PubMed  CAS  Google Scholar 

  81. Munzone E, Nolé F, Goldhirsch A, et al. Changes of HER2 status in circulating tumor cells compared with the primary tumor during treatment for advanced breast cancer. Clin Breast Cancer. 2010;10:392–7.

    Article  PubMed  CAS  Google Scholar 

  82. Pestrin M, Bessi S, Puglisi F, et al. Final results of a multicenter phase II clinical trial evaluating the activity of single-agent lapatinib in patients with HER2-negative metastatic breast cancer and HER2-positive circulating tumor cells. A proof-of-concept study. Breast Cancer Res Treat. 2012;134:283–9.

    Article  PubMed  CAS  Google Scholar 

  83. Mego M, De Giorgi U, Dawood S, et al. Characterization of metastatic breast cancer patients with nondetectable circulating tumor cells. Int J Cancer. 2011;129:417–23.

    Article  PubMed  CAS  Google Scholar 

  84. • Raimondi C, Gradilone A, Naso G, et al. Epithelial-mesenchymal transition and stemness features in circulating tumor cells from breast cancer patients. Breast Cancer Res Treat. 2011;130:449–55. Undetectable CTCs expressing EMT markers by current approved technique.

  85. Sieuwerts AM, Kraan J, Bolt J, et al. Anti-epithelial cell adhesion molecule antibodies and the detection of circulating normal-like breast tumor cells. J Natl Cancer Inst. 2009;101:61–6.

    Article  PubMed  CAS  Google Scholar 

  86. Mostert B, Kraan J, Bolt-de Vries J, et al. Detection of circulating tumor cells in breast cancer may improve through enrichment with anti-CD146. Breast Cancer Res Treat. 2011;127:33–41.

    Article  PubMed  CAS  Google Scholar 

  87. Weissenstein U, Schumann A, Reif M, Link S, Toffol-Schmidt UD, Heusser P. Detection of circulating tumor cells in blood of metastatic breast cancer patients using a combination of cytokeratin and EpCAM antibodies. BMC Cancer. 2012;12:206.

    Article  PubMed  CAS  Google Scholar 

  88. Gradilone A, Raimondi C, Nicolazzo C, et al. Circulating tumour cells lacking cytokeratin in breast cancer: the importance of being mesenchymal. J Cell Mol Med. 2011;15:1066–70.

    Article  PubMed  CAS  Google Scholar 

  89. Kallergi G, Papadaki MA, Politaki E, Mavroudis D, Georgoulias V, Agelaki S. Epithelial to mesenchymal transition markers expressed in circulating tumour cells of early and metastatic breast cancer patients. Breast Cancer Res. 2011;13:R59.

    Article  PubMed  Google Scholar 

  90. •• Dawson S-J, Tsui DWY, Murtaza M, et al. Analysis of circulating tumor DNA to monitor metastatic breast cancer. N Engl J Med. 2013;368:1199–209. Increased cfDNA reduced overall survival.

  91. Sorensen BS, Mortensen LS, Andersen J, Nexo E. Circulating HER2 DNA after trastuzumab treatment predicts survival and response in breast cancer. Anticancer Res. 2010;30:2463–8.

    PubMed  CAS  Google Scholar 

  92. Murtaza M, Dawson S-J, Tsui DWY, et al. Non-invasive analysis of acquired resistance to cancer therapy by sequencing of plasma DNA. Nature. 2013;497:108–12.

    Article  PubMed  CAS  Google Scholar 

  93. Higgins MJ, Jelovac D, Barnathan E, et al. Detection of tumor PIK3CA status in metastatic breast cancer using peripheral blood. Clin Cancer Res. 2012;18:3462–9.

    Article  PubMed  CAS  Google Scholar 

  94. Board RE, Wardley AM, Dixon JM, et al. Detection of PIK3CA mutations in circulating free DNA in patients with breast cancer. Breast Cancer Res Treat. 2010;120:461–7.

    Article  PubMed  CAS  Google Scholar 

  95. Bechmann T, Andersen RF, Pallisgaard N, et al. Plasma HER2 amplification in cell-free DNA during neoadjuvant chemotherapy in breast cancer. J Cancer Res Clin Oncol. 2013;139:995–1003.

    Article  PubMed  CAS  Google Scholar 

  96. Roth C, Pantel K, Müller V, et al. Apoptosis-related deregulation of proteolytic activities and high serum levels of circulating nucleosomes and DNA in blood correlate with breast cancer progression. BMC Cancer. 2011;11:4.

    Article  PubMed  CAS  Google Scholar 

  97. Hashad D, Sorour A, Ghazal A, Talaat I. Free circulating tumor DNA as a diagnostic marker for breast cancer. J Clin Lab Anal. 2012;26:467–72.

    Article  PubMed  CAS  Google Scholar 

  98. Schindlbeck C, Andergassen U, Hofmann S, et al. Comparison of circulating tumor cells (CTC) in peripheral blood and disseminated tumor cells in the bone marrow (DTC-BM) of breast cancer patients. J Cancer Res Clin Oncol. 2013;139:1055–62.

    Article  PubMed  Google Scholar 

  99. Müller HM, Widschwendter A, Fiegl H, et al. DNA methylation in serum of breast cancer patients: an independent prognostic marker. Cancer Res. 2003;63:7641–5.

    PubMed  Google Scholar 

  100. Yamamoto N, Nakayama T, Kajita M, et al. Detection of aberrant promoter methylation of GSTP1, RASSF1A, and RARβ2 in serum DNA of patients with breast cancer by a newly established one-step methylation-specific PCR assay. Breast Cancer Res Treat. 2012;132:165–73.

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by a grant from the Eugène Marquis Cancer Center, Rennes, France (to F. Le Du), National Cancer Institute 1K23CA121994 (A.M. Gonzalez-Angulo), ASCO Career Development Award (A.M. Gonzalez-Angulo), Komen for the Cure Catalystic Award KG090341 (A.M. Gonzalez-Angulo), Komen for the Cure SAC 100004, American Cancer Society Research Scholar Grant 121329-RSG-11-187-01-TBG (A.M. Gonzalez-Angulo), Commonwealth Foundation for Cancer Research (A.M. Gonzalez-Angulo), and National Cancer Institute through The University of Texas MD Anderson’s Cancer Center Support Grant (P30 CA016672).

Compliance with Ethics Guidelines

Conflict of Interest

Fanny Le Du declares that she has no conflict of interest.

Naoto T Ueno has received a grant from Apocell.

Ana M. Gonzalez-Angulo has received a grant from Genomic Health.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana M. Gonzalez-Angulo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Le Du, F., Ueno, N.T. & Gonzalez-Angulo, A.M. Breast Cancer Biomarkers: Utility in Clinical Practice. Curr Breast Cancer Rep 5, 284–292 (2013). https://doi.org/10.1007/s12609-013-0125-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12609-013-0125-9

Keywords

Navigation