Skip to main content

Advertisement

Log in

Targeting Metabolomics in Breast Cancer

  • Translational Research (V Stearns, Section Editor)
  • Published:
Current Breast Cancer Reports Aims and scope Submit manuscript

Abstract

Metabolomics is a science that provides a dynamic portrait of the metabolic status of a biological system. Down from genomics, transcriptomics, and proteomics, metabolomics assesses end product metabolites and small intermediate molecules. In oncology, identification and quantification of metabolites and correlation with critical metabolic pathways in carcinogenesis may provide insight into tumoral biology. In breast cancer, promising early work suggests that metabolomics might enhance current clinical practice by refining biological subclassification, improving prediction of recurrence, and aiding in treatment decisions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance ••Of major importance

  1. Nicholson JK. Global systems biology, personalized medicine and molecular epidemiology. Mol Syst Biol. 2006;2:52.

    Article  PubMed  Google Scholar 

  2. Assfalg M, Bertini I, Colangiuli D, et al. Evidence of different metabolic phenotypes in humans. Proc Natl Acad Sci U S A. 2008;105:1420–4.

    Article  PubMed  CAS  Google Scholar 

  3. Bernini P, Bertini I, Luchinat C, et al. Individual human phenotypes in metabolic space and time. J Proteome Res. 2009;8:4264–71.

    Article  PubMed  CAS  Google Scholar 

  4. Bertini I, Calabrò A, De Carli V, et al. The metabonomic signature of celiac disease. J Proteome Res. 2009;8:170–7.

    Article  PubMed  CAS  Google Scholar 

  5. Bernini P, Bertini I, Calabrò A. Are patients with potential celiac disease really potential? The answer of metabonomics. J Proteome Res. 2011;10:714–21.

    Article  PubMed  CAS  Google Scholar 

  6. Aimetti M, Cacciatore S, Graziano A, et al. Metabonomic analysis of saliva reveals generalized chronic periodontitis signature. Metabolomics. 2011;8:465–74.

    Article  Google Scholar 

  7. Travagli V, Zanardi I, Bernini P, et al. Effects of ozone blood treatment on the metabolite profile of human blood. Int J Toxicol. 2010;29:165–74.

    Article  PubMed  CAS  Google Scholar 

  8. Bertini I, Cacciatore S, Jensen BV, et al. Metabolomic NMR fingerprinting to identify and predict survival of patients with metastatic colorectal cancer. Cancer Res. 2012;72:356–64.

    Article  PubMed  CAS  Google Scholar 

  9. Ikeda A, Nishiumi S, Shinohara M, et al. Serum metabolomics as a novel diagnostic approach for gastrointestinal cancer. Biomed Chromatogr. 2012;26:548–58.

    Article  PubMed  CAS  Google Scholar 

  10. Oakman C, Tenori L, Claudino WM, et al. Identification of a serum-detectable metabolomic fingerprint potentially correlated with the presence of micrometastatic disease in early breast cancer patients at varying risks of disease relapse by traditional prognostic methods. Ann Oncol. 2011;22:1295–301.

    Article  PubMed  CAS  Google Scholar 

  11. OuYang D, Xu J, Huang H, Chen Z. Metabolomic profiling of serum from human pancreatic cancer patients using 1H NMR spectroscopy and principal component analysis. Appl Biochem Biotechnol. 2011;165:148–54.

    Article  PubMed  Google Scholar 

  12. • Slupsky CM, Steed H, Wells TH, et al. Urine metabolite analysis offers potential early diagnosis of ovarian and breast cancers. Clin Cancer Res. 2010;16:5835–41. This study highlights a urine metabolomic signal for breast cancer, which is detected in those with disease and not in healthy individuals.

    Article  PubMed  CAS  Google Scholar 

  13. Sreekumar A, Poisson LM, Rajendiran TM, et al. Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature. 2009;457:910–4.

    Article  PubMed  CAS  Google Scholar 

  14. Aboagye EO, Bhujwalla ZM. Malignant transformation alters membrane choline phospholipid metabolism of human mammary epithelial cells. Cancer Res. 1999;59:80–4.

    PubMed  CAS  Google Scholar 

  15. Singer S, Souza K, Thilly WG. Pyruvate utilization, phosphocholine and adenosine triphosphate (ATP) are markers of human breast tumor progression: a 31P- and 13C-nuclear magnetic resonance (NMR) spectroscopy study. Cancer Res. 1995;55:5140–5.

    PubMed  CAS  Google Scholar 

  16. Katz-Brull R, Seger D, Rivenson-Segal D, Rushkin E, Degani H. Metabolic markers of breast cancer: enhanced choline metabolism and reduced choline-ether-phospholipid synthesis. Cancer Res. 2002;62:1966–70.

    PubMed  CAS  Google Scholar 

  17. Mackinnon WB, Barry PA, Malycha PL, et al. Fine-needle biopsy specimens of benign breast lesions distinguished from invasive cancer ex vivo with proton MR spectroscopy. Radiology. 1997;204:661–6.

    PubMed  CAS  Google Scholar 

  18. Griffin JL, Shockcor JP. Metabolic profiles of cancer cells. Nat Rev Cancer. 2004;4:551–61.

    Article  PubMed  CAS  Google Scholar 

  19. Warburg O. Ueber den stoffwechsel der tumoren. London: Constable; 1930.

    Google Scholar 

  20. Cuadrado A, Carnero A, Dolfi F, Jiménez B, Lacal JC. Phosphorylcholine: a novel second messenger essential for mitogenic activity of growth factors. Oncogene. 1993;8:2959–68.

    PubMed  CAS  Google Scholar 

  21. Exton JH. Phosphatidylcholine breakdown and signal transduction. Biochim Biophys Acta. 1994;1212:26–42.

    Article  PubMed  CAS  Google Scholar 

  22. Nicholson JK, Lindon JC. Systems biology: metabonomics. Nature. 2008;455:1054–6.

    Article  PubMed  CAS  Google Scholar 

  23. • Asiago VM, Alvarado LZ, Shanaiah N, et al. Early detection of recurrent breast cancer using metabolite profiling. Cancer Res. 2010;70:8309–18. This study highlights a serum metabolomic signal for breast cancer, detected in those with disease and not in healthy individuals.

    Article  PubMed  CAS  Google Scholar 

  24. Sitter B, Bathen TF, Singstad TE, et al. Quantification of metabolites in breast cancer patients with different clinical prognosis using HR MAS MR spectroscopy. NMR Biomed. 2010;23:424–31.

    PubMed  CAS  Google Scholar 

  25. Beckonert O, Coen M, Keun HC, et al. High-resolution magic-angle-spinning NMR spectroscopy for metabolic profiling of intact tissues. Nat Protoc. 2010;5:1019–32.

    Article  PubMed  CAS  Google Scholar 

  26. •• Borgan E, Sitter B, Lingjærde OC, et al. Merging transcriptomics and metabolomics -advances in breast cancer profiling. BMC Cancer. 2010;10:628. This is a novel study with assessment of both the transcriptome and metabolome.

    Article  PubMed  CAS  Google Scholar 

  27. Li M, Song Y, Cho N, et al. An HR-MAS MR metabolomics study on breast tissues obtained with core needle biopsy. PLoS One. 2011;6:e25563.

    Article  PubMed  CAS  Google Scholar 

  28. Brown MV, McDunn JE, Gunst PR, et al. Cancer detection and biopsy classification using concurrent histopathological and metabolomic analysis of core biopsies. Genome Med. 2012;4:33.

    Article  PubMed  CAS  Google Scholar 

  29. • Gu H, Pan Z, Xi B, et al. Principal component directed partial least squares analysis for combining nuclear magnetic resonance and mass spectrometry data in metabolomics: application to the detection of breast cancer. Anal Chim Acta. 2011;686:57–63. This paper focuses on novel sequential application of NMR and MS to improve metabolomic prediction.

    Article  PubMed  CAS  Google Scholar 

  30. Martinez-Outschoorn UE, Pavlides S, Howell A, et al. Stromal-epithelial metabolic coupling in cancer: integrating autophagy and metabolism in the tumor microenvironment. Int J Biochem Cell Biol. 2011;43:1045–51.

    Article  PubMed  CAS  Google Scholar 

  31. Farmer P, Bonnefoi H, Anderle P, et al. A stroma-related gene signature predicts resistance to neoadjuvant chemotherapy in breast cancer. Nat Med. 2009;15:68–74.

    Article  PubMed  CAS  Google Scholar 

  32. Bernini P, Bertini I, Luchinat C, et al. Standard operating procedures for pre-analytical handling of blood and urine for metabolomic studies and biobanks. J Biomol NMR. 2011;49:231–43.

    Article  PubMed  CAS  Google Scholar 

  33. Serkova NJ, Niemann CU. Pattern recognition and biomarker validation using quantitative 1H-NMR-based metabolomics. Expert Rev Mol Diagn. 2006;6:717–31.

    Article  PubMed  CAS  Google Scholar 

  34. Bollard ME, Stanley EG, Lindon JC, Nicholson JK, Holmes E. NMR-based metabonomic approaches for evaluating physiological influences on biofluid composition. NMR Biomed. 2005;18:143–62.

    Article  PubMed  CAS  Google Scholar 

  35. •• Blekherman G, Laubenbacher R, Cortes DF, et al. Bioinformatics tools for cancer metabolomics. Metabolomics. 2011;7:329–43. This is a thorough review of bioinformatics tools in metabolomics.

    Article  PubMed  CAS  Google Scholar 

  36. Goldstein L, Gray R, Badve S, et al. Prognostic utility of the 21-gene assay in hormone receptor–positive operable breast cancer compared with classical clinicopathologic features. J Clin Oncol. 2008;26:4063–71.

    Article  PubMed  Google Scholar 

  37. Buyse M, Loi S, van’t Veer L, et al. Validation and clinical utility of a 70-gene prognostic signature for women with node-negative breast cancer. J Natl Cancer Inst. 2006;98:1183–92.

    Article  PubMed  CAS  Google Scholar 

  38. Perou CM, Sorlie T, Eisen MB, et al. Molecular portraits of human breast tumors. Nature. 2000;406:747–52.

    Article  PubMed  CAS  Google Scholar 

  39. Paik S, Shak S, Tang G, et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med. 2004;351:2817–26.

    Article  PubMed  CAS  Google Scholar 

  40. Hilvo M, Denkert C, Lehtinen L, et al. Novel theranostic opportunities offered by characterization of altered membrane lipid metabolism in breast cancer progression. Cancer Res. 2011;71:3236–45.

    Article  PubMed  CAS  Google Scholar 

  41. Yang C, Richardson AD, Osterman A, Smith JW. Profiling of central metabolism in human cancer cells by two dimensional NMR, GC–MS analysis, and isotopomer modelling. Metabolomics. 2007;4:13–29.

    Article  Google Scholar 

  42. Richardson AD, Yang C, Osterman A, Smith JW. Central carbon metabolism in the progression of mammary carcinoma. Breast Cancer Res Treat. 2008;110:297–307.

    Article  PubMed  CAS  Google Scholar 

  43. Sterin M, Cohen JS, Mardor Y, Berman E, Ringel I. Levels of phospholipid metabolites in breast cancer cells treated with antimitotic drugs A 31P-Magnetic Resonance Spectroscopy Study. Cancer Res. 2001;61:7536–43.

    PubMed  CAS  Google Scholar 

  44. Giskeødegård GF, Grinde MT, Sitter B, et al. Multivariate modeling and prediction of breast cancer prognostic factors using MR metabolomics. J Proteome Res. 2010;9:972–9.

    Article  PubMed  Google Scholar 

  45. Mountford CE, Somorjai RL, Malycha P, et al. Diagnosis and prognosis of breast cancer by magnetic resonance spectroscopy offine-needle aspirates analysed using a statistical classification strategy. Br J Surg. 2001;88:1234–40.

    Article  PubMed  CAS  Google Scholar 

  46. Sitter B, Lundgren S, Bathen TF, et al. Comparison of HR MAS MR spectroscopic profiles of breast cancer tissue with clinical parameters. NMR Biomed. 2006;19:30–40.

    Article  PubMed  CAS  Google Scholar 

  47. Bathen TF, Jensen LR, Sitter B, et al. MR-determined metabolic phenotype of breast cancer in prediction of lymphatic spread, grade, and hormone status. Breast Cancer Res Treat. 2007;104:181–9.

    Article  PubMed  Google Scholar 

  48. Giskeødegård GF, Lundgren S, Sitter B, et al. Lactate and glycine-potential MR biomarkers of prognosis in estrogen receptor-positive breast cancers. NMR Biomed. 2012. doi:10.1002/nbm.2798.

  49. Belouche-Babari M, Jackson LE, Al-Saffar NM, et al. Identification of magnetic resonance detectable metabolic changes associated with inhibition of phosphoinositide 3-kinase signalling in human breast cancer cells. Mol Cancer Ther. 2006;5:187–96.

    Article  Google Scholar 

  50. Tenori L, Oakman C, Claudino WM, et al. Exploration of serum metabolomic profiles and outcomes in women with metastatic breast cancer: a pilot study. Mol Oncol. 2012, In press

Download references

Acknowledgments

The authors wish to acknowledge the support of the Associazione “Sandro Pitigliani” Prato, Italy and the Associazione Italiana Ricerca Cancro, Milan, Italy.

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelo Di Leo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oakman, C., Tenori, L., Cappadona S, S. et al. Targeting Metabolomics in Breast Cancer. Curr Breast Cancer Rep 4, 249–256 (2012). https://doi.org/10.1007/s12609-012-0090-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12609-012-0090-8

Keywords

Navigation