Skip to main content
Log in

A review on the Role of Oral Nutritional Supplements in Chronic Obstructive Pulmonary Disease

  • Review
  • Published:
The journal of nutrition, health & aging

Abstract

Due to the high smoking rate in developing countries and the rising aging population in high-income countries, the global prevalence of chronic obstructive pulmonary disease (COPD), estimated to be 11.7%, is increasing and is the third-leading cause of mortality. COPD is likely to be present in elderly individuals with impaired gastroenteric functions. Gastrointestinal congestion, dyspnea, and anxiety are pathophysiological characteristics of COPD, contributing to poor appetite, reduced dietary intake, and high-energy expenditure. These factors are implicated in the progression of malnutrition in COPD patients. Malnutrition is detrimental to lung functions and is associated with an increased risk of infection, exacerbation and mortality, and a longer duration of hospitalization. Therefore, nutritional support to treat malnutrition in COPD patients is very vital. Oral nutritional supplements (ONS) may hold the key to COPD treatment. To clarify this statement, we review current evidence for ONS in COPD patients to benefit from clinical outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Adeloye D, Song P, Zhu Y, Campbell H, Sheikh A, Rudan I, et al. Global, regional, and national prevalence of, and risk factors for, chronic obstructive pulmonary disease (COPD) in 2019: a systematic review and modelling analysis. The Lancet. Respiratory medicine. 2022; 10: 447–458. doi:https://doi.org/10.1016/S2213-2600(21)00511-7.

    PubMed  Google Scholar 

  2. Lindberg A, Lindberg L, Sawalha S, Nilsson U, Stridsman C, Lundbäck B, et al. Large underreporting of COPD as cause of death-results from a population-based cohort study. Respiratory medicine. 2021; 186: 106518. doi:https://doi.org/10.1016/j.rmed.2021.106518.

    Article  PubMed  Google Scholar 

  3. Wang C, Xu J, Yang L, Xu Y, Zhang X, Bai C, et al. Prevalence and risk factors of chronic obstructive pulmonary disease in China (the China Pulmonary Health [CPH] study): a national cross-sectional study. The Lancet. 2018; 391: 1706–1717. doi:https://doi.org/10.1016/S0140-6736(18)30841-9.

    Article  Google Scholar 

  4. Langer D, Ciavaglia C, Faisal A, Webb KA, Neder JA, Gosselink R, et al. Inspiratory muscle training reduces diaphragm activation and dyspnea during exercise in COPD. Journal of applied physiology. 2018; 125: 381–392. doi:https://doi.org/10.1152/japplphysiol.01078.2017.

    Article  PubMed  Google Scholar 

  5. Chen CW, Chen YY, Lu CL, Chen SC, Chen YJ, Lin MS, et al. Severe hypoalbuminemia is a strong independent risk factor for acute respiratory failure in COPD: a nationwide cohort study. International journal of chronic obstructive pulmonary disease. 2015; 10: 1147–1154. doi:https://doi.org/10.2147/COPD.S85831.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Yamaya M, Usami O, Nakayama S, Tode N, Yamada A, Ito S, et al. Malnutrition, airflow limitation and severe emphysema are risks for exacerbation of chronic obstructive pulmonary disease in Japanese subjects: a retrospective single-center study. International journal of chronic obstructive pulmonary disease. 2020; 15: 857–868. doi:https://doi.org/10.2147/COPD.S238457.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Cai B, Zhu Y, Ma Yi, Xu Z, Zao Yi, Wang J, et al. Effect of supplementing a high-fat, low-carbohydrate enteral formula in COPD patients. Nutrition. 2003; 19: 229–232. doi:https://doi.org/10.1016/s0899-9007(02)01064-x.

    Article  CAS  PubMed  Google Scholar 

  8. Dal Negro RW, Testa A, Aquilani R, Tognella S, Pasini E, Barbieri A, et al. Essential amino acid supplementation in patients with severe COPD: a step towards home rehabilitation. Monaldi archives for chest disease. 2012; 77: 67–75. doi: https://doi.org/10.4081/monaldi.2012.154.

    CAS  PubMed  Google Scholar 

  9. Dal Negro RW, Aquilani R, Bertacco S, Boschi F, Micheletto C, Tognella S. Comprehensive effects of supplemented essential amino acids in patients with severe COPD and sarcopenia. Monaldi archives for chest disease. 2010; 73: 25–33. doi:10.4081/monaldi.2010.310.

    CAS  PubMed  Google Scholar 

  10. Deutz NE, Ziegler TR, Matheson EM, Matarese LE, Tappenden KA, Baggs GE, et al. Reduced mortality risk in malnourished hospitalized older adult patients with COPD treated with a specialized oral nutritional supplement: sub-group analysis of the NOURISH study. Clinical nutrition. 2021; 40: 1388–1395. doi:https://doi.org/10.1016/j.clnu.2020.08.031.

    Article  CAS  PubMed  Google Scholar 

  11. Gouzi F, Maury J, Héraud N, Molinari N, Bertet H, Ayoub B, et al. Additional effects of nutritional antioxidant supplementation on peripheral muscle during pulmonary rehabilitation in COPD patients: a randomized controlled trial. Oxidative medicine and cellular longevity. 2019; 2019: 5496346. doi:https://doi.org/10.1155/2019/5496346.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ogasawara T, Marui S, Miura E, Sugiura M, Matsuyama W, Aoshima Y, et al. Effect of eicosapentaenoic acid on prevention of lean body mass depletion in patients with exacerbation of chronic obstructive pulmonary disease: a prospective randomized controlled trial. Clinical nutrition ESPEN. 2018; 28: 67–73. doi:https://doi.org/10.1016/j.clnesp.2018.09.076.

    Article  PubMed  Google Scholar 

  13. Borsini A, Nicolaou A, Camacho-Muñoz D, Kendall AC, Di Benedetto MG, Giacobbe J, et al. Omega-3 polyunsaturated fatty acids protect against inflammation through production of LOX and CYP450 lipid mediators: relevance for major depression and for human hippocampal neurogenesis. Molecular psychiatry. 2021; 26: 6773–6788. doi:https://doi.org/10.1038/s41380-021-01160-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Matsuyama W, Mitsuyama H, Watanabe M, Oonakahara K, Higashimoto I, Osame M, et al. Effects of omega-3 polyunsaturated fatty acids on inflammatory markers in COPD. Chest. 2005; 128: 3817–3827. doi:https://doi.org/10.1378/chest.128.6.3817.

    Article  CAS  PubMed  Google Scholar 

  15. Varraso R, Barr RG, Willett WC, Speizer FE, Camargo CA Jr. Fish intake and risk of chronic obstructive pulmonary disease in 2 large US cohorts. The American journal of clinical nutrition. 2015; 101: 354–361. doi:https://doi.org/10.3945/ajcn.114.094516.

    Article  CAS  PubMed  Google Scholar 

  16. Zanforlini BM, Ceolin C, Trevisan C, Alessi A, Seccia DM, Noale M, et al. Clinical trial on the effects of oral magnesium supplementation in stable-phase COPD patients. Aging clinical and experimental research. 2022; 34: 167–174. doi:https://doi.org/10.1007/s40520-021-01921-z.

    Article  PubMed  Google Scholar 

  17. Calder PC, Laviano A, Lonnqvist F, Muscaritoli M, Öhlander M, Schols A. Targeted medical nutrition for cachexia in chronic obstructive pulmonary disease: a randomized, controlled trial. Journal of cachexia, sarcopenia and muscle. 2018; 9: 28–40. doi:10.1002/jcsm.12228.

    Article  PubMed  Google Scholar 

  18. Lu MC, Yang MD, Li PC, Fang HY, Huang HY, Chan YC, et al. Effect of oligomeric proanthocyanidin on the antioxidant status and lung function of patients with chronic obstructive pulmonary disease. In vivo. 2018; 32: 753–758. doi:https://doi.org/10.21873/invivo.11304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Simoes DCM, Vogiatzis I. Can muscle protein metabolism be specifically targeted by exercise training in COPD? Journal of thoracic disease. 2018; 10: S1367–S1376. doi:https://doi.org/10.21037/jtd.2018.02.67.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ingadottir AR, Beck AM, Baldwin C, Weekes CE, Geirsdottir OG, Ramel A, et al. Oral nutrition supplements and between-meal snacks for nutrition therapy in patients with COPD identified as at nutritional risk: a randomised feasibility trial. BMJ open respiratory research. 2019; 6: e000349. doi:https://doi.org/10.1136/bmjresp-2018-000349.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Saudny-Unterberger H, Martin JG, Gray-Donald K. Impact of nutritional support on functional status during an acute exacerbation of chronic obstructive pulmonary disease. American journal of respiratory and critical care medicine. 1997; 156: 794–799. doi:https://doi.org/10.1164/ajrccm.156.3.9612102.

    Article  CAS  PubMed  Google Scholar 

  22. Hussain SN, Sandri M. Role of autophagy in COPD skeletal muscle dysfunction. Journal of applied physiology. 2013; 114: 1273–1281. doi:https://doi.org/10.1152/japplphysiol.00893.2012.

    Article  CAS  PubMed  Google Scholar 

  23. Ahmadi A, Eftekhari MH, Mazloom Z, Masoompour M, Fararooei M, Eskandari MH, et al. Fortified whey beverage for improving muscle mass in chronic obstructive pulmonary disease: a single-blind, randomized clinical trial. Respiratory research. 2020; 21: 216. doi:https://doi.org/10.1186/s12931-020-01466-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Xue M, Cai C, Guan L, Xu Y, Lin J, Zeng Y, et al. Exploration of n-6 and n-3 polyunsaturated fatty acids metabolites associated with nutritional levels in patients with severe stable chronic obstructive pulmonary disease. International journal of chronic obstructive pulmonary disease. 2020; 15: 1633–1642. doi:https://doi.org/10.2147/COPD.S245617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ceniccola GD, Castro MG, Piovacari SMF, Horie LM, Corrêa FG, Barrere APN, et al. Current technologies in body composition assessment: advantages and disadvantages. Nutrition. 2019; 62: 25–31. doi:https://doi.org/10.1016/j.nut.2018.11.028.

    Article  PubMed  Google Scholar 

  26. Mattsson S, Thomas BJ. Development of methods for body composition studies. Physics in medicine and biology. 2006; 51: R203––R228. doi:https://doi.org/10.1088/0031-9155/51/13/R13.

    Article  PubMed  Google Scholar 

  27. King DA, Cordova F, Scharf SM. Nutritional aspects of chronic obstructive pulmonary disease. Proceedings of the American thoracic society. 2008; 5: 519–523. doi:https://doi.org/10.1513/pats.200707-092ET.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Gurgun A, Deniz S, Argin M, Karapolat H. Effects of nutritional supplementation combined with conventional pulmonary rehabilitation in muscle-wasted chronic obstructive pulmonary disease: a prospective, randomized and controlled study. Respirology. 2013; 18: 495–500. doi:https://doi.org/10.1111/resp.12019.

    Article  PubMed  Google Scholar 

  29. Aldhahir AM, Rajeh AMA, Aldabayan YS, Drammeh S, Subbu V, Alqahtani JS, et al. Nutritional supplementation during pulmonary rehabilitation in COPD: A systematic review. Chronic respiratory disease. 2020; 17: 1479973120904953. doi:https://doi.org/10.1177/1479973120904953.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Broekhuizen R, Creutzberg EC, Weling-Scheepers CA, Wouters EF, Schols AM. Optimizing oral nutritional drink supplementation in patients with chronic obstructive pulmonary disease. The British journal of nutrition. 2005; 93: 965–971. doi:10.1079/bjn20051437.

    Article  CAS  PubMed  Google Scholar 

  31. Planas M, Alvarez J, García-Peris PA, de la Cuerda C, de Lucas P, Castellá M, et al. Nutritional support and quality of life in stable chronic obstructive pulmonary disease (COPD) patients. Clinical nutrition. 2005; 24: 433–441. doi:https://doi.org/10.1016/j.clnu.2005.01.005.

    Article  PubMed  Google Scholar 

  32. Baldi S, Aquilani R, Pinna GD, Poggi P, De Martini A, Bruschi C. Fat-free mass change after nutritional rehabilitation in weight losing COPD: role of insulin, C-reactive protein and tissue hypoxia. International journal of chronic obstructive pulmonary disease. 2010; 5: 29–39. doi:https://doi.org/10.2147/copd.s7739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Deutz NE, Matheson EM, Matarese LE, Luo M, Baggs GE, Nelson JL, et al. Readmission and mortality in malnourished, older, hospitalized adults treated with a specialized oral nutritional supplement: a randomized clinical trial. Clinical nutrition. 2016; 35: 18–26. doi:https://doi.org/10.1016/j.clnu.2015.12.010.

    Article  PubMed  Google Scholar 

  34. van Beers M, Rutten-van Mölken MPMH, van de Bool C, Boland M, Kremers SPJ, Franssen FME, et al. Clinical outcome and cost-effectiveness of a 1-year nutritional intervention programme in COPD patients with low muscle mass: the randomized controlled NUTRAIN trial. Clinical nutrition. 2020; 39: 405–413. doi:https://doi.org/10.1016/j.clnu.2019.03.001.

    Article  PubMed  Google Scholar 

  35. Broekhuizen R, Wouters EF, Creutzberg EC, Weling-Scheepers CA, Schols AM. Polyunsaturated fatty acids improve exercise capacity in chronic obstructive pulmonary disease. Thorax. 2005; 60: 376–382. doi:https://doi.org/10.1136/thx.2004.030858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chen LK, Woo J, Assantachai P, Auyeung TW, Chou MY, Iijima K, et al. Asian Working Group for Sarcopenia: 2019 consensus update on sarcopenia diagnosis and treatment. Journal of the American Medical Directors Association. 2020; 21: 300–307. e2. doi:https://doi.org/10.1016/j.jamda.2019.12.012.

    Article  PubMed  Google Scholar 

  37. Benz E, Trajanoska K, Lahousse L, Schoufour JD, Terzikhan N, De Roos E, et al. Sarcopenia in COPD: a systematic review and meta-analysis. European respiratory review. 2019; 28: 190049. doi:https://doi.org/10.1183/16000617.0049-2019.

    Article  PubMed  Google Scholar 

  38. Sepúlveda-Loyola W, Osadnik C, Phu S, Morita AA, Duque G, Probst VS. Diagnosis, prevalence, and clinical impact of sarcopenia in COPD: a systematic review and meta-analysis. Journal of cachexia, sarcopenia and muscle. 2020; 11: 1164–1176. doi:https://doi.org/10.1002/jcsm.12600.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Puig-Vilanova E, Aguiló R, Rodríguez-Fuster A, Martínez-Llorens J, Gea J, Barreiro E. Epigenetic mechanisms in respiratory muscle dysfunction of patients with chronic obstructive pulmonary disease. PloS one. 2014; 9: e111514. doi:https://doi.org/10.1371/journal.pone.0111514.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Jones SE, Maddocks M, Kon SS, Canavan JL, Nolan CM, Clark AL, et al. Sarcopenia in COPD: prevalence, clinical correlates and response to pulmonary rehabilitation. Thorax. 2015; 70: 213–218. doi:https://doi.org/10.1136/thoraxjnl-2014-206440.

    Article  PubMed  Google Scholar 

  41. Robinson SM, Reginster JY, Rizzoli R, Shaw SC, Kanis JA, Bautmans I, et al. Does nutrition play a role in the prevention and management of sarcopenia? Clinical Nutrition. 2018; 37: 1121–1132. doi:https://doi.org/10.1016/j.clnu.2017.08.016.

    Article  CAS  PubMed  Google Scholar 

  42. Robinson S, Cooper C, Aihie Sayer A. Nutrition and sarcopenia: a review of the evidence and implications for preventive strategies. Journal of aging research. 2012; 2012: 510801. doi:https://doi.org/10.1155/2012/510801.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Matheson EM, Nelson JL, Baggs GE, Luo M, Deutz NE. Specialized oral nutritional supplement (ONS) improves handgrip strength in hospitalized, malnourished older patients with cardiovascular and pulmonary disease: a randomized clinical trial. Clinical nutrition. 2021; 40: 844–849. doi:https://doi.org/10.1016/j.clnu.2020.08.035.

    Article  CAS  PubMed  Google Scholar 

  44. Paulin FV, Zagatto AM, Chiappa GR, Müller PT. Addition of vitamin B12 to exercise training improves cycle ergometer endurance in advanced COPD patients: a randomized and controlled study. Respiratory medicine. 2017; 122: 23–29. doi:https://doi.org/10.1016/j.rmed.2016.11.015.

    Article  PubMed  Google Scholar 

  45. Rondanelli M, Cereda E, Klersy C, Faliva MA, Peroni G, Nichetti M, et al. Improving rehabilitation in sarcopenia: a randomized-controlled trial utilizing a muscle-targeted food for special medical purposes. Journal of cachexia, sarcopenia and muscle. 2020; 11: 1535–1547. doi:https://doi.org/10.1002/jcsm.12532.

    Article  PubMed  PubMed Central  Google Scholar 

  46. van de Bool C, Rutten EPA, van Helvoort A, Franssen FME, Wouters EFM, Schols AMWJ. A randomized clinical trial investigating the efficacy of targeted nutrition as adjunct to exercise training in COPD. Journal of cachexia, sarcopenia and muscle. 2017; 8: 748–758. doi:https://doi.org/10.1002/jcsm.12219.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Giagnorio E, Malacarne C, Mantegazza R, Bonanno S, Marcuzzo S. MyomiRs and their multifaceted regulatory roles in muscle homeostasis and amyotrophic lateral sclerosis. Journal of cell science. 2021; 134: jcs258349. doi:https://doi.org/10.1242/jcs.258349.

    Article  CAS  PubMed  Google Scholar 

  48. Horak M, Novak J, Bienertova-Vasku J. Muscle-specific microRNAs in skeletal muscle development. Developmental biology. 2016; 410: 1–13. doi:https://doi.org/10.1016/j.ydbio.2015.12.013.

    Article  CAS  PubMed  Google Scholar 

  49. Donaldson A, Natanek SA, Lewis A, Man WD, Hopkinson NS, Polkey MI, et al. Increased skeletal muscle-specific microRNA in the blood of patients with COPD. Thorax. 2013; 68: 1140–1149. doi:https://doi.org/10.1136/thoraxjnl-2012-203129.

    Article  PubMed  Google Scholar 

  50. Shi L, Xin Q, Chai R, Liu L, Ma Z. Ectopic expressed miR-203 contributes to chronic obstructive pulmonary disease via targeting TAK1 and PIK3CA. International journal of clinical and experimental pathology. 2015; 8: 10662–10670. PMID:26617776; PMCID:PMC4637591.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Puig-Vilanova E, Martínez-Llorens J, Ausin P, Roca J, Gea J, Barreiro E. Quadriceps muscle weakness and atrophy are associated with a differential epigenetic profile in advanced COPD. Clinical science. 2015; 128: 905–921. doi:https://doi.org/10.1042/CS20140428.

    Article  CAS  PubMed  Google Scholar 

  52. Barreiro E, Sancho-Muñoz A, Puig-Vilanova E, Salazar-Degracia A, Pascual-Guardia S, Casadevall C, et al. Differences in micro-RNA expression profile between vastus lateralis samples and myotubes in COPD cachexia. Journal of applied physiology. 2019; 126: 403–412. doi:https://doi.org/10.1152/japplphysiol.00611.2018.

    Article  CAS  PubMed  Google Scholar 

  53. Puig-Vilanova E, Ausin P, Martinez-Llorens J, Gea J, Barreiro E. Do epigenetic events take place in the vastus lateralis of patients with mild chronic obstructive pulmonary disease? PloS one. 2014; 9: e102296. doi:https://doi.org/10.1371/journal.pone.0102296.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Shen Y, Wang L, Wu Y, Ou Y, Lu H, Yao X. A novel diagnostic signature based on three circulating exosomal mircoRNAs for chronic obstructive pulmonary disease. Experimental and therapeutic medicine. 2021; 22: 717. doi:https://doi.org/10.3892/etm.2021.10149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Peterson SJ, Braunschweig CA. Prevalence of sarcopenia and associated outcomes in the clinical setting. Nutrition in clinical practice: Official Publication of the American Society for Parenteral and Enteral Nutrition. 2016; 31: 40–48. doi:https://doi.org/10.1177/0884533615622537.

    Article  CAS  Google Scholar 

  56. Drummond MJ, McCarthy JJ, Fry CS, Esser KA, Rasmussen BB. Aging differentially affects human skeletal muscle microRNA expression at rest and after an anabolic stimulus of resistance exercise and essential amino acids. American journal of physiology Endocrinology and metabolism. 2008; 295: E1333–1340. doi:https://doi.org/10.1152/ajpendo.90562.2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Barbiera A, Pelosi L, Sica G, Scicchitano BM. Nutrition and microRNAs: novel insights to fight sarcopenia. Antioxidants (Basel, Switzerland). 2020; 9: 951. doi:https://doi.org/10.3390/antiox9100951.

    CAS  Google Scholar 

  58. Marco E, Sánchez-Rodríguez D, Dávalos-Yerovi VN, Duran X, Pascual EM, Muniesa JM, et al. Malnutrition according to ESPEN consensus predicts hospitalizations and long-term mortality in rehabilitation patients with stable chronic obstructive pulmonary disease. Clinical nutrition. 2019; 38: 2180–2186. doi:https://doi.org/10.1016/j.clnu.2018.09.014.

    Article  PubMed  Google Scholar 

  59. Cruz-Jentoft AJ. Beta-hydroxy-beta-methyl butyrate (HMB): from experimental data to clinical evidence in sarcopenia. Current protein & peptide science. 2018; 19: 668–672. doi:https://doi.org/10.2174/1389203718666170529105026.

    Article  CAS  Google Scholar 

  60. Martineau AR, James WY, Hooper RL, Barnes NC, Jolliffe DA, Greiller CL, et al. Vitamin D3 supplementation in patients with chronic obstructive pulmonary disease (ViDiCO): a multicentre, double-blind, randomised controlled trial. The Lancet Respiratory Medicine. 2015; 3: 120–130. doi:https://doi.org/10.1016/S2213-2600(14)70255-3.

    Article  CAS  PubMed  Google Scholar 

  61. Khan DM, Ullah A, Randhawa FA, Iqtadar S, Butt NF, Waheed K. Role of vitamin D in reducing number of acute exacerbations in chronic obstructive pulmonary disease (COPD) patients. Pakistan journal of medical sciences. 2017; 33: 610–614. doi:https://doi.org/10.12669/pjms.333.12397.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Kshirsagar K, Patil VC. Chronic obstructive pulmonary disease: Is serum magnesium level a risk factor for its acute exacerbation? Caspian journal of internal medicine. 2021; 12: 223–227. doi:https://doi.org/10.22088/cjim.12.2.223.

    PubMed  PubMed Central  Google Scholar 

  63. Gumus A, Haziroglu M, Gunes Y. Association of serum magnesium levels with frequency of acute exacerbations in chronic obstructive pulmonary disease: a prospective study. Pulmonary medicine. 2014; 2014: 329476. doi:https://doi.org/10.1155/2014/329476.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Aziz HS, Blamoun AI, Shubair MK, Ismail MM, DeBari VA, Khan MA. Serum magnesium levels and acute exacerbation of chronic obstructive pulmonary disease: a retrospective study. Annals of clinical and laboratory science. 2005; 35: 423–427. PMID: 16254259.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C.-Y. Ko.

Additional information

Conflicts ofinterest

The authors declare that no financial conflicts of interest exist.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, WJ., Fan, XX., Yang, YH. et al. A review on the Role of Oral Nutritional Supplements in Chronic Obstructive Pulmonary Disease. J Nutr Health Aging 26, 723–731 (2022). https://doi.org/10.1007/s12603-022-1822-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12603-022-1822-8

Key words

Navigation