Abstract
Objectives
Sarcopenia, defined as an age-associated loss of skeletal muscle function and muscle mass, occurs in approximately 6 - 22 % of older adults. This paper presents evidence-based clinical practice guidelines for screening, diagnosis and management of sarcopenia from the task force of the International Conference on Sarcopenia and Frailty Research (ICSFR).
Methods
To develop the guidelines, we drew upon the best available evidence from two systematic reviews paired with consensus statements by international working groups on sarcopenia. Eight topics were selected for the recommendations: (i) defining sarcopenia; (ii) screening and diagnosis; (iii) physical activity prescription; (iv) protein supplementation; (v) vitamin D supplementation; (vi) anabolic hormone prescription; (vii) medications under development; and (viii) research. The ICSFR task force evaluated the evidence behind each topic including the quality of evidence, the benefitharm balance of treatment, patient preferences/values, and cost-effectiveness. Recommendations were graded as either strong or conditional (weak) as per the GRADE (Grading of Recommendations Assessment, Development and Evaluation) approach. Consensus was achieved via one face-to-face workshop and a modified Delphi process.
Recommendations
We make a conditional recommendation for the use of an internationally accepted measurement tool for the diagnosis of sarcopenia including the EWGSOP and FNIH definitions, and advocate for rapid screening using gait speed or the SARC-F. To treat sarcopenia, we strongly recommend the prescription of resistance-based physical activity, and conditionally recommend protein supplementation/a protein-rich diet. No recommendation is given for Vitamin D supplementation or for anabolic hormone prescription. There is a lack of robust evidence to assess the strength of other treatment options.
This is a preview of subscription content, access via your institution.
References
Anker SD, Morley JE, von Haehling S. Welcome to the ICD-10 code for sarcopenia. Journal of cachexia, sarcopenia and muscle. 2016;7(5):512–4.
Rosenberg IH. Sarcopenia: origins and clinical relevance. Clinics in geriatric medicine. 2011;27(3):337–9.
Chen LK, Liu LK, Woo J, Assantachai P, Auyeung TW, Bahyah KS, et al. Sarcopenia in Asia: consensus report of the Asian Working Group for Sarcopenia. Journal of the American Medical Directors Association. 2014;15(2):95–101.
Yoshimura Y, Wakabayashi H, Yamada M, Kim H, Harada A, Arai H. Interventions for Treating Sarcopenia: A Systematic Review and Meta-Analysis of Randomized Controlled Studies. Journal of the American Medical Directors Association. 2017;18(6):553.e1-.e16.
Fielding RA, Vellas B, Evans WJ, Bhasin S, Morley JE, Newman AB, et al. Sarcopenia: an undiagnosed condition in older adults. Current consensus definition: prevalence, etiology, and consequences. International working group on sarcopenia. Journal of the American Medical Directors Association. 2011;12(4):249–56.
Akishita M, Kozaki K, Iijima K, Tanaka T, Shibasaki K, Ogawa S, et al. Chapter 1 Definitions and diagnosis of sarcopenia. Geriatrics & gerontology international. 2018;18 (Suppl. 1)):7-12.
Landi F, Liperoti R, Fusco D, Mastropaolo S, Quattrociocchi D, Proia A, et al. Prevalence and risk factors of sarcopenia among nursing home older residents. The journals of gerontology Series A, Biological sciences and medical sciences. 2012;67(1):48–55.
Bianchi L, Abete P, Bellelli G, Bo M, Cherubini A, Corica F, et al. Prevalence and Clinical Correlates of Sarcopenia, Identified According to the EWGSOP Definition and Diagnostic Algorithm, in Hospitalized Older People: The GLISTEN Study. The journals of gerontology Series A, Biological sciences and medical sciences. 2017;72(11):1575–81.
Cerri AP, Bellelli G, Mazzone A, Pittella F, Landi F, Zambon A, et al. Sarcopenia and malnutrition in acutely ill hospitalized elderly: Prevalence and outcomes. Clinical nutrition (Edinburgh, Scotland). 2015;34(4):745–51.
Sanchez-Rodriguez D, Marco E, Ronquillo-Moreno N, Miralles R, Vazquez-Ibar O, Escalada F, et al. Prevalence of malnutrition and sarcopenia in a post-acute care geriatric unit: Applying the new ESPEN definition and EWGSOP criteria. Clinical nutrition (Edinburgh, Scotland). 2017;36(5):1339–44.
Cruz-Jentoft AJ, Landi F, Schneider SM, Zuniga C, Arai H, Boirie Y, et al. Prevalence of and interventions for sarcopenia in ageing adults: a systematic review. Report of the International Sarcopenia Initiative (EWGSOP and IWGS). Age Ageing. 2014;43(6):748–59.
Yoshida D, Suzuki T, Shimada H, Park H, Makizako H, Doi T, et al. Using two different algorithms to determine the prevalence of sarcopenia. Geriatrics & gerontology international. 2014;14 Suppl 1:46–51.
Castillo EM, Goodman-Gruen D, Kritz-Silverstein D, Morton DJ, Wingard DL, Barrett-Connor E. Sarcopenia in elderly men and women: the Rancho Bernardo study. American journal of preventive medicine. 2003;25(3):226–31.
Janssen I, Heymsfield SB, Ross R. Low relative skeletal muscle mass (sarcopenia) in older persons is associated with functional impairment and physical disability. Journal of the American Geriatrics Society. 2002;50(5):889–96.
Shimotakta H, Shimada H, Satake S, Endo N, Shibasaki K, Ogawa S, et al. Chapter 2 Epidemiology of sarcopenia. Geriatrics & gerontology international. 2018;18 (Suppl. 1):13–22.
Davies B, Garcia F, Ara I, Artalejo FR, Rodriguez-Manas L, Walter S. Relationship Between Sarcopenia and Frailty in the Toledo Study of Healthy Aging: A Population Based Cross-Sectional Study. Journal of the American Medical Directors Association. 2018;19(4):282–6.
Morley JE, Anker SD, von Haehling S. Prevalence, incidence, and clinical impact of sarcopenia: facts, numbers, and epidemiology—update 2014. Journal of cachexia, sarcopenia and muscle. 2014;5(4):253–9.
Ethgen O, Beaudart C, Buckinx F, Bruyere O, Reginster JY. The Future Prevalence of Sarcopenia in Europe: A Claim for Public Health Action. Calcified tissue international. 2017;100(3):229–34.
Arai H, Wakabayashi H, Yoshimura Y, Yamada M, Kim H, Harada A. Chapter 4 Treatment of sarcopenia. Geriatrics & gerontology international. 2018;18 (Suppl 1):1-17.
Landi F, Calvani R, Cesari M, Tosato M, Martone AM, Ortolani E, et al. Sarcopenia: An Overview on Current Definitions, Diagnosis and Treatment. Current protein & peptide science. 2018;19(7):633–8.
Perez-Zepeda MU, Sgaravatti A, Dent E. Sarcopenia and post-hospital outcomes in older adults: A longitudinal study. Archives of gerontology and geriatrics. 2017;69:105–9.
Brouwers MC, Kho ME, Browman GP, Burgers JS, Cluzeau F, Feder G, et al. AGREE II: advancing guideline development, reporting and evaluation in health care. CMAJ: Canadian Medical Association journal = journal de l’Association medicale canadienne. 2010;182(18):E839-42.
Guyatt GH, Oxman AD, Vist GE, Kunz R, Falck-Ytter Y, Alonso-Coello P, et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ (Clinical research ed). 2008;336(7650):924–6.
Alonso-Coello P, Oxman AD, Moberg J, Brignardello-Petersen R, Akl EA, Davoli M, et al. GRADE Evidence to Decision (EtD) frameworks: a systematic and transparent approach to making well informed healthcare choices. 2: Clinical practice guidelines. BMJ (Clinical research ed). 2016;353:i2089.
Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing. 2010;39(4):412–23.
Studenski SA, Peters KW, Alley DE, Cawthon PM, McLean RR, Harris TB, et al. The FNIH sarcopenia project: rationale, study description, conference recommendations, and final estimates. The journals of gerontology Series A, Biological sciences and medical sciences. 2014;69(5):547–58.
Cruz JE, Fahim G, Moore K. Practice Guideline Development, Grading, and Assessment. P & T: a peer-reviewed journal for formulary management. 2015;40(12):854–7.
Woolf S, Schunemann HJ, Eccles MP, Grimshaw JM, Shekelle P. Developing clinical practice guidelines: types of evidence and outcomes; values and economics, synthesis, grading, and presentation and deriving recommendations. Implementation science: IS. 2012;7:61.
World Health Organisation. WHO handbook for guideline development, 2nd ed: World Health Organization; 2014. Available from: http://www.who.int/iris/ handle/10665/145714.
Woo J, Leung J, Morley JE. Defining sarcopenia in terms of incident adverse outcomes. Journal of the American Medical Directors Association. 2015;16(3):247–52.
Bijlsma AY, Meskers CG, van den Eshof N, Westendorp RG, Sipila S, Stenroth L, et al. Diagnostic criteria for sarcopenia and physical performance. Age (Dordrecht, Netherlands). 2014;36(1):275–85.
Woo J, Leung J, Morley JE. Validating the SARC-F: a suitable community screening tool for sarcopenia? Journal of the American Medical Directors Association. 2014;15(9):630–4.
Law TD, Clark LA, Clark BC. Resistance Exercise to Prevent and Manage Sarcopenia and Dynapenia. Annual review of gerontology & geriatrics. 2016;36(1):205–28.
von Haehling S, Morley JE, Anker SD. An overview of sarcopenia: facts and numbers on prevalence and clinical impact. Journal of cachexia, sarcopenia and muscle. 2010;1(2):129–33.
Morley JE, Anker SD, von Haehling S. Prevalence, incidence, and clinical impact of sarcopenia: facts, numbers, and epidemiology-update 2014. Journal of cachexia, sarcopenia and muscle. 2014;5(4):253–9.
Yamada M, Nishiguchi S, Fukutani N, Tanigawa T, Yukutake T, Kayama H, et al. Prevalence of sarcopenia in community-dwelling Japanese older adults. Journal of the American Medical Directors Association. 2013;14(12):911–5.
Volpato S, Bianchi L, Cherubini A, Landi F, Maggio M, Savino E, et al. Prevalence and clinical correlates of sarcopenia in community-dwelling older people: application of the EWGSOP definition and diagnostic algorithm. The journals of gerontology Series A, Biological sciences and medical sciences. 2014;69(4):438–46.
Smoliner C, Sieber CC, Wirth R. Prevalence of sarcopenia in geriatric hospitalized patients. Journal of the American Medical Directors Association. 2014;15(4):267–72.
Beaudart C, Reginster JY, Slomian J, Buckinx F, Locquet M, Bruyere O. Prevalence of sarcopenia: the impact of different diagnostic cut-off limits. Journal of musculoskeletal & neuronal interactions. 2014;14(4):425–31.
Morley JE, Malmstrom TK. Frailty, sarcopenia, and hormones. Endocrinology and metabolism clinics of North America. 2013;42(2):391–405.
Liguori I, Russo G, Aran L, Bulli G, Curcio F, Della-Morte D, et al. Sarcopenia: assessment of disease burden and strategies to improve outcomes. Clinical interventions in aging. 2018;13:913–27.
Landi F, Cruz-Jentoft AJ, Liperoti R, Russo A, Giovannini S, Tosato M, et al. Sarcopenia and mortality risk in frail older persons aged 80 years and older: results from ilSIRENTE study. Age Ageing. 2013;42(2):203–9.
Kuzuya M, Sugimoto K, Suzuki T, Watanabe Y, Kamibayashi K, Kurihara T, et al. Chapter 3 Prevention of sarcopenia. Geriatrics & gerontology international. 2018;18((Suppl. 1)):23-7.
Kim S, Kim M, Won CW. Validation of the Korean Version of the SARC-F Questionnaire to Assess Sarcopenia: Korean Frailty and Aging Cohort Study. Journal of the American Medical Directors Association. 2018;19(1):40–5.e1.
Ida S, Nakai M, Ito S, Ishihara Y, Imataka K, Uchida A, et al. Association Between Sarcopenia and Mild Cognitive Impairment Using the Japanese Version of the SARC-F in Elderly Patients With Diabetes. Journal of the American Medical Directors Association. 2017;18(9):809.e9-.e13.
Kemmler W, Sieber C, Freiberger E, von Stengel S. The SARC-F Questionnaire: Diagnostic Overlap with Established Sarcopenia Definitions in Older German Men with Sarcopenia. Gerontology. 2017;63(5):411–6.
Rolland Y, Dupuy C, Abellan Van Kan G, Cesari M, Vellas B, Faruch M, et al. Sarcopenia Screened by the SARC-F Questionnaire and Physical Performances of Elderly Women: A Cross-Sectional Study. Journal of the American Medical Directors Association. 2017;18(10):848–52.
Cao L, Chen S, Zou C, Ding X, Gao L, Liao Z, et al. A pilot study of the SARC-F scale on screening sarcopenia and physical disability in the Chinese older people. The journal of nutrition, health & aging. 2014;18(3):277–83.
Parra-Rodriguez L, Szlejf C, Garcia-Gonzalez AI, Malmstrom TK, Cruz-Arenas E, Rosas-Carrasco O. Cross-Cultural Adaptation and Validation of the Spanish-Language Version of the SARC-F to Assess Sarcopenia in Mexican Community-Dwelling Older Adults. Journal of the American Medical Directors Association. 2016;17(12):1142–6.
Barbosa-Silva TG, Menezes AM, Bielemann RM, Malmstrom TK, Gonzalez MC. Enhancing SARC-F: Improving Sarcopenia Screening in the Clinical Practice. Journal of the American Medical Directors Association. 2016;17(12):1136–41.
Calvani R, Marini F, Cesari M, Tosato M, Picca A, Anker SD, et al. Biomarkers for physical frailty and sarcopenia. Aging clinical and experimental research. 2017;29(1):29–34.
Cesari M, Fielding RA, Pahor M, Goodpaster B, Hellerstein M, van Kan GA, et al. Biomarkers of sarcopenia in clinical trials-recommendations from the International Working Group on Sarcopenia. Journal of cachexia, sarcopenia and muscle. 2012;3(3):181–90.
Morley JE. Frailty and Sarcopenia: The New Geriatric Giants. Revista de investigacion clinica; organo del Hospital de Enfermedades de la Nutricion. 2016;68(2):59–67.
Beaudart C, McCloskey E, Bruyere O, Cesari M, Rolland Y, Rizzoli R, et al. Sarcopenia in daily practice: assessment and management. BMC geriatrics. 2016;16(1):170.
Malmstrom TK, Miller DK, Simonsick EM, Ferrucci L, Morley JE. SARC-F: a symptom score to predict persons with sarcopenia at risk for poor functional outcomes. Journal of cachexia, sarcopenia and muscle. 2016;7(1):28–36.
Tanaka S, Kamiya K, Hamazaki N, Matsuzawa R, Nozaki K, Maekawa E, et al. Utility of SARC-F for Assessing Physical Function in Elderly Patients With Cardiovascular Disease. Journal of the American Medical Directors Association. 2017;18(2):176–81.
Ida S, Kaneko R, Murata K. SARC-F for Screening of Sarcopenia Among Older Adults: A Meta-analysis of Screening Test Accuracy. Journal of the American Medical Directors Association. 2018.
Yang M, Hu X, Xie L, Zhang L, Zhou J, Lin J, et al. Screening Sarcopenia in Community-Dwelling Older Adults: SARC-F vs SARC-F Combined With Calf Circumference (SARC-CalF). Journal of the American Medical Directors Association. 2018;19(3):277.e1-.e8.
Cruz-Jentoft A, Bahat G, Bauer JM, Boirie Y, Bruyere O T. C, et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2018; EPub ahead of print, doi: 10.1093/ageing/afy169.
Locquet M, Beaudart C, Reginster JY, Petermans J, Bruyere O. Comparison of the performance of five screening methods for sarcopenia. Clinical epidemiology. 2018;10:71–82.
Dam TT, Peters KW, Fragala M, Cawthon PM, Harris TB, McLean R, et al. An evidence-based comparison of operational criteria for the presence of sarcopenia. The journals of gerontology Series A, Biological sciences and medical sciences. 2014;69(5):584–90.
Cederholm T, Barazzoni R, Austin P, Ballmer P, Biolo G, Bischoff SC, et al. ESPEN guidelines on definitions and terminology of clinical nutrition. Clinical nutrition (Edinburgh, Scotland). 2017;36(1):49–64.
McLean RR, Kiel DP, Berry SD, Broe KE, Zhang X, Cupples LA, et al. Lower Lean Mass Measured by Dual-Energy X-ray Absorptiometry (DXA) is Not Associated with Increased Risk of Hip Fracture in Women: The Framingham Osteoporosis Study. Calcified tissue international. 2018.
Cawthon PM, Orwoll ES, Peters KE, Ensrud KE, Cauley JA, Kado DM, et al. Strong Relation between Muscle Mass Determined by D3-creatine Dilution, Physical Performance and Incidence of Falls and Mobility Limitations in a Prospective Cohort of Older Men. The Journals of Gerontology: Series A. 2018:gly129-gly.
Messina C, Maffi G, Vitale JA, Ulivieri FM, Guglielmi G, Sconfienza LM. Diagnostic imaging of osteoporosis and sarcopenia: a narrative review. Quantitative imaging in medicine and surgery. 2018;8(1):86–99.
Ismail C, Zabal J, Hernandez HJ, Woletz P, Manning H, Teixeira C, et al. Diagnostic ultrasound estimates of muscle mass and muscle quality discriminate between women with and without sarcopenia. Frontiers in physiology. 2015;6:302.
Hellerstein M, Evans W. Recent advances for measurement of protein synthesis rates, use of the ‘Virtual Biopsy’ approach, and measurement of muscle mass. Curr Opin Clin Nutr Metab Care. 2017;20(3):191–200.
Reiss J, Iglseder B, Kreutzer M, Weilbuchner I, Treschnitzer W, Kassmann H, et al. Case finding for sarcopenia in geriatric inpatients: performance of bioimpedance analysis in comparison to dual X-ray absorptiometry. BMC geriatrics. 2016;16:52.
Kim M, Kim H. Accuracy of segmental multi-frequency bioelectrical impedance analysis for assessing whole-body and appendicular fat mass and lean soft tissue mass in frail women aged 75 years and older. European journal of clinical nutrition. 2013;67(4):395–400.
Lourenco RA, Perez-Zepeda M, Gutierrez-Robledo L, Garcia-Garcia FJ, Rodriguez Manas L. Performance of the European Working Group on Sarcopenia in Older People algorithm in screening older adults for muscle mass assessment. Age Ageing. 2015;44(2):334–8.
Borde R, Hortobagyi T, Granacher U. Dose-Response Relationships of Resistance Training in Healthy Old Adults: A Systematic Review and Meta-Analysis. Sports medicine (Auckland, NZ). 2015;45(12):1693–720.
Manini TM, Clark BC, Tracy BL, Burke J, Ploutz-Snyder L. Resistance and functional training reduces knee extensor position fluctuations in functionally limited older adults. European journal of applied physiology. 2005;95(5–6):436–46.
Ramirez-Campillo R, Alvarez C, Garcia-Hermoso A, Celis-Morales C, Ramirez-Velez R, Gentil P, et al. High-speed resistance training in elderly women: Effects of cluster training sets on functional performance and quality of life. Experimental gerontology. 2018;110:216–22.
Lazarus NR, Izquierdo M, Higginson IJ, Harridge SDR. Exercise Deficiency Diseases of Ageing: The Primacy of Exercise and Muscle Strengthening as First-Line Therapeutic Agents to Combat Frailty. Journal of the American Medical Directors Association. 2018;19(9):741–3.
Barbalho MSM, Gentil P, Izquierdo M, Fisher J, Steele J, Raiol RA. There are no no-responders to low or high resistance training volumes among older women. Experimental gerontology. 2017;99:18–26.
Kim HK, Suzuki T, Saito K, Yoshida H, Kobayashi H, Kato H, et al. Effects of exercise and amino acid supplementation on body composition and physical function in community-dwelling elderly Japanese sarcopenic women: a randomized controlled trial. Journal of the American Geriatrics Society. 2012;60(1):16–23.
Kim H, Suzuki T, Saito K, Yoshida H, Kojima N, Kim M, et al. Effects of exercise and tea catechins on muscle mass, strength and walking ability in community-dwelling elderly Japanese sarcopenic women: a randomized controlled trial. Geriatrics & gerontology international. 2013;13(2):458–65.
Dent E, Lien C, Lim WS, Wong WC, Wong CH, Ng TP, et al. The Asia-Pacific Clinical Practice Guidelines for the Management of Frailty. Journal of the American Medical Directors Association. 2017;18(7):564–75.
Mijnarends DM, Schols JM, Meijers JM, Tan FE, Verlaan S, Luiking YC, et al. Instruments to assess sarcopenia and physical frailty in older people living in a community (care) setting: similarities and discrepancies. Journal of the American Medical Directors Association. 2015;16(4):301–8.
Dent E, Kowal P, Hoogendijk EO. Frailty measurement in research and clinical practice: A review. Eur J Intern Med. 2016;31:3–10.
Binder EF, Yarasheski KE, Steger-May K, Sinacore DR, Brown M, Schechtman KB, et al. Effects of progressive resistance training on body composition in frail older adults: results of a randomized, controlled trial. The journals of gerontology Series A, Biological sciences and medical sciences. 2005;60(11):1425–31.
Beaudart C, Locquet M, Reginster JY, Delandsheere L, Petermans J, Bruyere O. Quality of life in sarcopenia measured with the SarQoL(R): impact of the use of different diagnosis definitions. Aging clinical and experimental research. 2018;30(4):307–13.
Picorelli AM, Pereira LS, Pereira DS, Felicio D, Sherrington C. Adherence to exercise programs for older people is influenced by program characteristics and personal factors: a systematic review. Journal of physiotherapy. 2014;60(3):151–6.
Deutz NE, Bauer JM, Barazzoni R, Biolo G, Boirie Y, Bosy-Westphal A, et al. Protein intake and exercise for optimal muscle function with aging: recommendations from the ESPEN Expert Group. Clinical nutrition (Edinburgh, Scotland). 2014;33(6):929–36.
Valenzuela PL, Morales JS, Pareja-Galeano H, Izquierdo M, Emanuele E, de la Villa P, et al. Physical strategies to prevent disuse-induced functional decline in the elderly. Ageing research reviews. 2018;47:80–8.
de Souto Barreto P, Morley JE, Chodzko-Zajko W, K HP, Weening-Djiksterhuis E, Rodriguez-Manas L, et al. Recommendations on Physical Activity and Exercise for Older Adults Living in Long-Term Care Facilities: A Taskforce Report. Journal of the American Medical Directors Association. 2016;17(5):381–92.
Bauer JM, Verlaan S, Bautmans I, Brandt K, Donini LM, Maggio M, et al. Effects of a vitamin D and leucine-enriched whey protein nutritional supplement on measures of sarcopenia in older adults, the PROVIDE study: a randomized, double-blind, placebo-controlled trial. Journal of the American Medical Directors Association. 2015;16(9):740–7.
Cramer JT, Cruz-Jentoft AJ, Landi F, Hickson M, Zamboni M, Pereira SL, et al. Impacts of High-Protein Oral Nutritional Supplements Among Malnourished Men and Women with Sarcopenia: A Multicenter, Randomized, Double-Blinded, Controlled Trial. Journal of the American Medical Directors Association. 2016;17(11):1044–55.
Cruz-Jentoft AJ. Beta-Hydroxy-Beta-Methyl Butyrate (HMB): From Experimental Data to Clinical Evidence in Sarcopenia. Current protein & peptide science. 2018;19(7):668–72.
Chen LK, Lee WJ, Peng LN, Liu LK, Arai H, Akishita M. Recent Advances in Sarcopenia Research in Asia: 2016 Update From the Asian Working Group for Sarcopenia. Journal of the American Medical Directors Association. 2016;17(8):767. e1-7.
Zdzieblik D, Oesser S, Baumstark MW, Gollhofer A, Konig D. Collagen peptide supplementation in combination with resistance training improves body composition and increases muscle strength in elderly sarcopenic men: a randomised controlled trial. The British journal of nutrition. 2015;114(8):1237–45.
Kim H, Kim M, Kojima N, Fujino K, Hosoi E, Kobayashi H, et al. Exercise and Nutritional Supplementation on Community-Dwelling Elderly Japanese Women With Sarcopenic Obesity: A Randomized Controlled Trial. Journal of the American Medical Directors Association. 2016;17(11):1011–9.
Gumieiro DN, Murino Rafacho BP, Buzati Pereira BL, Cavallari KA, Tanni SE, Azevedo PS, et al. Vitamin D serum levels are associated with handgrip strength but not with muscle mass or length of hospital stay after hip fracture. Nutrition (Burbank, Los Angeles County, Calif). 2015;31(7–8):931–4.
Girgis CM, Baldock PA, Downes M. Vitamin D, muscle and bone: Integrating effects in development, aging and injury. Molecular and cellular endocrinology. 2015;410:3–10.
Holick MF. Bioavailability of vitamin D and its metabolites in black and white adults. The New England journal of medicine. 2013;369(21):2047–8.
McKee A, Morley JE, Matsumoto AM, Vinik A. SARCOPENIA: AN ENDOCRINE DISORDER? Endocrine practice: official journal of the American College of Endocrinology and the American Association of Clinical Endocrinologists. 2017;23(9):1140–9.
Huff H, Merchant AT, Lonn E, Pullenayegum E, Smaill F, Smieja M. Vitamin D and progression of carotid intima-media thickness in HIV-positive Canadians. HIV medicine. 2018;19(2):143–51.
Baumgartner RN, Waters DL, Gallagher D, Morley JE, Garry PJ. Predictors of skeletal muscle mass in elderly men and women. Mechanisms of ageing and development. 1999;107(2):123–36.
Papanicolaou DA, Ather SN, Zhu H, Zhou Y, Lutkiewicz J, Scott BB, et al. A phase IIA randomized, placebo-controlled clinical trial to study the efficacy and safety of the selective androgen receptor modulator (SARM), MK-0773 in female participants with sarcopenia. The journal of nutrition, health & aging. 2013;17(6):533–43.
Isidori AM, Giannetta E, Greco EA, Gianfrilli D, Bonifacio V, Isidori A, et al. Effects of testosterone on body composition, bone metabolism and serum lipid profile in middle-aged men: a meta-analysis. Clinical endocrinology. 2005;63(3):280–93.
Snyder P, Bhasin S, Cunningham G, Matsumoto A, Stephens-Shields A, Cauley J, et al. Effects of Testosterone Treatment in Older Men. The New England journal of medicine. 2016;374(7):611–24.
Dalton JT, Barnette KG, Bohl CE, Hancock ML, Rodriguez D, Dodson ST, et al. The selective androgen receptor modulator GTx-024 (enobosarm) improves lean body mass and physical function in healthy elderly men and postmenopausal women: results of a double-blind, placebo-controlled phase II trial. Journal of cachexia, sarcopenia and muscle. 2011;2(3):153–61.
Coss CC, Jones A, Hancock ML, Steiner MS, Dalton JT. Selective androgen receptor modulators for the treatment of late onset male hypogonadism. Asian Journal of Andrology. 2014;16(2):256–61.
Dobs AS, Boccia RV, Croot CC, Gabrail NY, Dalton JT, Hancock ML, et al. Effects of enobosarm on muscle wasting and physical function in patients with cancer: a double-blind, randomised controlled phase 2 trial. Lancet Oncol. 2013;14(4):335–45.
Kim MJ, Morley JE. The hormonal fountains of youth: myth or reality? Journal of endocrinological investigation. 2005;28(11 Suppl Proceedings):5-14.
Blackman MR, Sorkin JD, Munzer T, Bellantoni MF, Busby-Whitehead J, Stevens TE, et al. Growth hormone and sex steroid administration in healthy aged women and men: a randomized controlled trial. Jama. 2002;288(18):2282–92.
Kaiser FE, Silver AJ, Morley JE. The effect of recombinant human growth hormone on malnourished older individuals. Journal of the American Geriatrics Society. 1991;39(3):235–40.
Garcia JM, Boccia RV, Graham CD, Yan Y, Duus EM, Allen S, et al. Anamorelin for patients with cancer cachexia: an integrated analysis of two phase 2, randomised, placebo-controlled, double-blind trials. Lancet Oncol. 2015;16(1):108–16.
Wagner KR, Fleckenstein JL, Amato AA, Barohn RJ, Bushby K, Escolar DM, et al. A phase I/IItrial of MYO-029 in adult subjects with muscular dystrophy. Annals of neurology. 2008;63(5):561–71.
Padhi D, Higano CS, Shore ND, Sieber P, Rasmussen E, Smith MR. Pharmacological inhibition of myostatin and changes in lean body mass and lower extremity muscle size in patients receiving androgen deprivation therapy for prostate cancer. The Journal of clinical endocrinology and metabolism. 2014;99(10):E1967-75.
Amato AA, Sivakumar K, Goyal N, David WS, Salajegheh M, Praestgaard J, et al. Treatment of sporadic inclusion body myositis with bimagrumab. Neurology. 2014;83(24):2239–46.
Attie KM, Borgstein NG, Yang Y, Condon CH, Wilson DM, Pearsall AE, et al. A single ascending-dose study of muscle regulator ACE-031 in healthy volunteers. Muscle & nerve. 2013;47(3):416–23.
Morley JE. Pharmacologic Options for the Treatment of Sarcopenia. Calcified tissue international. 2016;98(4):319–33.
Pahor M, Guralnik JM, Ambrosius WT, Blair S, Bonds DE, Church TS, et al. Effect of structured physical activity on prevention of major mobility disability in older adults: the LIFE study randomized clinical trial. Jama. 2014;311(23):2387–96.
Bann D, Hire D, Manini T, Cooper R, Botoseneanu A, McDermott MM, et al. Light Intensity physical activity and sedentary behavior in relation to body mass index and grip strength in older adults: cross-sectional findings from the Lifestyle Interventions and Independence for Elders (LIFE) study. PloS one. 2015;10(2):e0116058.
Marzetti E, Calvani R, Landi F, Hoogendijk EO, Fougere B, Vellas B, et al. Innovative Medicines Initiative: The SPRINTT Project. The Journal of frailty & aging. 2015;4(4):207–8.
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
12603_2018_1139_MOESM1_ESM.docx
Appendix 1. Patient Information for Treatment of Sarcopenia (poor muscle function with low muscle mass)
Rights and permissions
About this article
Cite this article
Dent, E., Morley, J.E., Cruz-Jentoft, A.J. et al. International Clinical Practice Guidelines for Sarcopenia (ICFSR): Screening, Diagnosis and Management. J Nutr Health Aging 22, 1148–1161 (2018). https://doi.org/10.1007/s12603-018-1139-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12603-018-1139-9
Key words
- Sarcopenia/diagnosis
- sarcopenia/therapy
- muscle strength
- aged
- 80 and over
- practice guideline