Associations between Plasmatic Polyunsaturated Fatty Acids Concentrations and Cognitive Status and Decline in Neurocognitive Disorders



To examine the association of plasmatic and erythrocyte concentrations polyunsaturated fatty acids (PUFA) with both cognitive status and decline.


Longitudinal observational cohort study. Setting: Memory Clinic of Lyon Sud university hospital.


140 patients, aged 60 and older, were referred to the memory clinic, and successively included in the cohort, between March 2010 and February 2014.


Concentration of ω-3 PUFA (eicosapentaenoic: EPA and docosahexaenoic: DHA) and ω-6 PUFA (arachidonic: AA), were measured at baseline in plasma and in the erythrocytes membrane. Cognitive status was assessed using the mini mental state examination (MMSE), at baseline and every six months during follow-up. The median follow-up period was of 11,5 months.


Compared to participants with minor neurocognitive disorders (MMSE≥24), participants with major neurocognitive disorders (NCD) had lower plasmatic concentrations of EPA and DHA (p<0.05) at baseline. Erythrocyte AA and DHA concentrations were significantly lower in patients with cognitive decline (defined as a ≥2 points loss of MMSE per year), while no difference in plasmatic concentrations was observed.


Our study suggests that ω-3 PUFA plasma concentrations (mainly EPA and DHA) could be associated with cognitive status in older people. Moreover, in this exploratory study, lower erythrocyte PUFA concentrations (AA and DHA) were associated with accelerated decline and could be proposed as a surrogate marker for prediction of cognitive decline.

This is a preview of subscription content, log in to check access.

Table 1
Table 2
Table 3
Table 4
Table 5



arachidonic acid


alpha-linolenic acid


Alzheimer disease


Activities of daily living


linolenic acid


choline phosphoglycerides


Cerebrospinal fluid


docosahexaenoic acid


cholesteryl esters


eicosapentaenoic acid


ethanolamine phosphoglycerides


fatty acids


Instrumental activities of daily living


mild cognitive impairment


mini mental state examination


Magnetic resonance imaging


Neurocognitive disorders


palmitic acid




poly unsaturated fatty acids.


  1. 1.

    Scarmeas N, Stern Y, Tang M-X, Mayeux R, Luchsinger JA. Mediterranean diet and risk for Alzheimer’s disease. 2006; 59(6):912–21.

    Google Scholar 

  2. 2.

    Cederholm T, Salem N, Palmblad J. ω-3. Fatty Acids in the Prevention of Cognitive Decline in Humans 2013;123.4(6):672–6. /PMC3823515/

    Google Scholar 

  3. 3.

    Vellas B, Carrie I, Gillette-Guyonnet S, Touchon J, Dantoine T, Dartigues JF, et al. MAPT Study: A multidomain approch for preventing Alzheimer’s disease: design and baseline data. J Prev Alzheimers Dis;2014;1(1):13–22./PMC4652787/

    PubMed  PubMed Central  CAS  Google Scholar 

  4. 4.

    Fougère B, de Souto Barreto P, Goisser S, Soriano G, Guyonnet S, Andrieu S, et al. Red blood cell membrane omega-3 fatty acid levels and physical performance: Crosssectional data from the MAPT study. Clin Nutr Edinb Scotl. 2017 Apr 12

    Google Scholar 

  5. 5.

    Issa AM, Mojica WA, Morton SC, Traina S, Newberry SJ, Hilton LG, et al. The efficacy of omega-3 fatty acids on cognitive function in aging and dementia: a systematic review. Dement Geriatr Cogn Disord. 2006; 21(2):88–96.

    Article  PubMed  CAS  Google Scholar 

  6. 6.

    Yanai H. Effects of N-3 Polyunsaturated Fatty Acids on Dementia. J Clin Med Res;2017;9(1):1–9./PMC5127208/

    Article  PubMed  CAS  Google Scholar 

  7. 7.

    Solfrizzi V, Capurso C, D’Introno A, Colacicco AM, Frisardi V, Santamato A, et al. Dietary fatty acids, age-related cognitive decline, and mild cognitive impairment. J Nutr Health Aging. 2008 Jul;12(6):382–6.

    Article  PubMed  CAS  Google Scholar 

  8. 8.

    Samieri C, Féart C, Letenneur L, Dartigues J-F, Pérès K, Auriacombe S, et al. Low plasma eicosapentaenoic acid and depressive symptomatology are independent predictors of dementia risk. Am J Clin Nutr [Internet]. 2008 Sep 1 [cited 2014 Jan 24];88(3):714–21. Available from:

    Article  PubMed  CAS  Google Scholar 

  9. 9.

    Whalley LJ, Deary IJ, Starr JM, Wahle KW, Rance KA, Bourne VJ, et al. n–3 Fatty acid erythrocyte membrane content, APOE ε4, and cognitive variation: an observational follow-up study in late adulthood. Am J Clin Nutr [Internet]. 2008 Feb 1 [cited 2014 Jan 24];87(2):449–54. Available from:

    Article  PubMed  CAS  Google Scholar 

  10. 10.

    Schuchardt JP, Köbe T, Witte V, Willers J, Gingrich A, Tesky V, et al. Genetic Variants of the FADS Gene Cluster Are Associated with Erythrocyte Membrane LC PUFA Levels in Patients with Mild Cognitive Impairment. J Nutr Health Aging. 2016; 20(6):611–20.

    Article  PubMed  CAS  Google Scholar 

  11. 11.

    El Zoghbi M, Boulos C, Amal AH, Saleh N, Awada S, Rachidi S, et al. Association between cognitive function and nutritional status in elderly: A cross-sectional study in three institutions of Beirut—Lebanon. Geriatr Ment Health Care;2013;1(4):73–81.

    Article  Google Scholar 

  12. 12.

    Eriksdotter M, Vedin I, Falahati F, Freund-Levi Y, Hjorth E, Faxen-Irving G, et al. Plasma Fatty Acid Profiles in Relation to Cognition and Gender in Alzheimer’s Disease Patients During Oral Omega-3 Fatty Acid Supplementation: The OmegAD Study. J Alzheimers Dis JAD. 2015; 48(3):805–12.

    Article  PubMed  CAS  Google Scholar 

  13. 13.

    MacLean CH, Issa AM, Newberry SJ, Mojica WA, Morton SC, Garland RH, et al. Effects of Omega-3 Fatty Acids on Cognitive Function with Aging, Dementia, and Neurological Diseases. Agency for Healthcare Research and Quality (US); 2005.

    Google Scholar 

  14. 14.

    Revel F, Gilbert T, Roche S, Drai J, Blond E, Ecochard R, et al. Influence of oxidative stress biomarkers on cognitive decline. J Alzheimers Dis JAD. 2015; 45(2):553–60.

    PubMed  CAS  Article  Google Scholar 

  15. 15.

    Cederholm T, Salem N, Palmblad J. ω-3 fatty acids in the prevention of cognitive decline in humans. Adv Nutr Bethesda Md. 2013 Nov;4(6):672–6.

    Article  CAS  Google Scholar 

  16. 16.

    Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975 Nov;12(3):189–98.

    Article  PubMed  CAS  Google Scholar 

  17. 17.

    American Psychiatric Association. Diagnostic and statistical manual of mental disorders. (5th ed). Washington, DC; 2013.

  18. 18.

    Sachdev PS, Mohan A, Taylor L, Jeste DV. DSM-5 and mental disorders in older individuals: an overview. Harv Rev Psychiatry [Internet]. 2015 Oct [cited 2017 Nov 27];23(5):320. Available from: PMC4562208/

    Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, Fox NC, et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement J Alzheimers Assoc;2011;7(3):270–9./PMC3312027/

    Article  Google Scholar 

  20. 20.

    Portet F, Ousset PJ, Visser PJ, Frisoni GB, Nobili F, Scheltens P, et al. Mild cognitive impairment (MCI) in medical practice: a critical review of the concept and new diagnostic procedure. Report of the MCI Working Group of the European Consortium on Alzheimer’s Disease. J Neurol Neurosurg Psychiatry:2006;714–8./PMC2077456/

    Google Scholar 

  21. 21.

    Dullemeijer C, Durga J, Brouwer IA, Rest O van de Kok FJ, Brummer R-JM, et al. n−3 Fatty acid proportions in plasma and cognitive performance in older adults. Am J Clin Nutr; 2007; 86(5):1479–85.

    Article  PubMed  CAS  Google Scholar 

  22. 22.

    Folch J, Ascoli I, Lees M, Meath JA, LeBARON N. Preparation of lipide extracts from brain tissue. J Biol Chem. 1951 Aug;191(2):833–41.

    PubMed  CAS  Google Scholar 

  23. 23.

    Cui Y, Chen X, Liu L, Xie W, Wu Y, Wu Q, et al. Gas chromatography-mass spectrometry analysis of the free fatty acids in serum obtained from patients with Alzheimer’s disease. Biomed Mater Eng. 2015;26 Suppl 1:S2165–2177.

    PubMed  Google Scholar 

  24. 24.

    Yuan L, Zhen J, Ma W, Cai C, Huang X, Xiao R. The Erythrocyte Fatty Acid Profile and Cognitive Function in Old Chinese Adults. Nutrients. 2016;8(7).

    Google Scholar 

  25. 25.

    Dupuy A, Le Faouder P, Vigor C, Oger C, Galano J-M, Dray C, et al. Simultaneous quantitative profiling of 20 isoprostanoids from omega-3 and omega-6 polyunsaturated fatty acids by LC-MS/MS in various biological samples. Anal Chim Acta. 2016 19;921: 46–58.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. 26.

    Simultaneous quantitative profiling of 20 isoprostanoids from omega-3 and omega-6 polyunsaturated fatty acids by LC-MS/MS in various biological samples. [Internet]. [cited 2016 Jul 5]. Available from:

  27. 27.

    R Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.; 2014.

  28. 28.

    Ma J, Folsom AR, Shahar E, Eckfeldt JH. Plasma fatty acid composition as an indicator of habitual dietary fat intake in middle-aged adults. The Atherosclerosis Risk in Communities (ARIC) Study Investigators. Am J Clin Nutr. 1995 Sep;62(3):564–71.

    Article  PubMed  CAS  Google Scholar 

  29. 29.

    Baylin A, Kim MK, Donovan-Palmer A, Siles X, Dougherty L, Tocco P, et al. Fasting whole blood as a biomarker of essential fatty acid intake in epidemiologic studies: comparison with adipose tissue and plasma. Am J Epidemiol. 2005 Aug 15; 162(4):373–81.

    Article  PubMed  Google Scholar 

  30. 30.

    Arab L. Biomarkers of fat and fatty acid intake. J Nutr. 2003 Mar;133 Suppl 3:925S–932S.

    Article  PubMed  CAS  Google Scholar 

  31. 31.

    Beydoun MA, Kaufman JS, Satia JA, Rosamond W, Folsom AR. Plasma n-3 fatty acids and the risk of cognitive decline in older adults: the Atherosclerosis Risk in Communities Study. Am J Clin Nutr. 2007 Apr;85(4):1103–11.

    Article  PubMed  CAS  Google Scholar 

  32. 32.

    Huang M-C, Brenna JT, Chao AC, Tschanz C, Diersen-Schade DA, Hung H-C. Differential Tissue Dose Responses of (n-3) and (n-6) PUFA in Neonatal Piglets Fed Docosahexaenoate and Arachidonoate. J Nutr;2007;137(9):2049–55.

    Article  PubMed  CAS  Google Scholar 

  33. 33.

    Brenner SR. Red Blood Cell Omega-3 Fatty Acid Levels and Markers of Accelerated Brain Aging. Neurology; 2012;79(1):106–7.

    Article  PubMed  Google Scholar 

  34. 34.

    Ammann EM, Pottala JV, Harris WS, Espeland MA, Wallace R, Denburg NL, et al. ω-3 fatty acids and domain-specific cognitive aging: secondary analyses of data from WHISCA. Neurology. 2013 Oct 22; 81(17):1484–91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. 35.

    Hodson L, Skeaff CM, Fielding BA. Fatty acid composition of adipose tissue and blood in humans and its use as a biomarker of dietary intake. Prog Lipid Res. 2008 Sep;47(5):348–80.

    Article  PubMed  CAS  Google Scholar 

  36. 36.

    Yurko-Mauro K, Alexander DD, Van Elswyk ME. Docosahexaenoic Acid and Adult Memory: A Systematic Review and Meta-Analysis. PLoS ONE [Internet]. 2015 Mar 18 [cited 2016 Aug 7];10(3). Available from:

    Google Scholar 

  37. 37.

    Mazereeuw G, Lanctôt KL, Chau SA, Swardfager W, Herrmann N. Effects of ω-3 fatty acids on cognitive performance: a meta-analysis. Neurobiol Aging. 2012 Jul;33(7):1482.e17–29.

    Article  CAS  Google Scholar 

  38. 38.

    D’Ascoli TA, Mursu J, Voutilainen S, Kauhanen J, Tuomainen T-P, Virtanen JK. Association between serum long-chain omega-3 polyunsaturated fatty acids and cognitive performance in elderly men and women: The Kuopio Ischaemic Heart Disease Risk Factor Study. Eur J Clin Nutr. 2016 Aug;70(8):970–5.

    Article  PubMed  CAS  Google Scholar 

  39. 39.

    Tully AM, Roche HM, Doyle R, Fallon C, Bruce I, Lawlor B, et al. Low serum cholesteryl ester-docosahexaenoic acid levels in Alzheimer’s disease: a case-control study. Br J Nutr. 2003 Apr;89(4):483–9.

    Article  PubMed  CAS  Google Scholar 

  40. 40.

    Yin Y, Fan Y, Lin F, Xu Y, Zhang J. Nutrient biomarkers and vascular risk factors in subtypes of mild cognitive impairment: a cross-sectional study. J Nutr Health Aging. 2015 Jan;19(1):39–47.

    Article  PubMed  CAS  Google Scholar 

  41. 41.

    Conquer JA, Tierney MC, Zecevic J, Bettger WJ, Fisher RH. Fatty acid analysis of blood plasma of patients with alzheimer’s disease, other types of dementia, and cognitive impairment. Lipids;2000;35(12):1305–12.

    Article  PubMed  CAS  Google Scholar 

  42. 42.

    Heude B, Ducimetière P, Berr C. Cognitive decline and fatty acid composition of erythrocyte membranes—The EVA Study. Am J Clin Nutr:2003;803–8.

    Google Scholar 

  43. 43.

    Hooper C, De Souto Barreto P, Payoux P, Salabert AS, Guyonnet S, Andrieu S, et al. Cross-sectional associations of cortical β-amyloid with erythrocyte membrane longchain polyunsaturated fatty acids in older adults with subjective memory complaints. J Neurochem. 2017 Aug;142(4):589–96.

    Article  PubMed  CAS  Google Scholar 

  44. 43.

    Lopes da Silva S, Vellas B, Elemans S, Luchsinger J, Kamphuis P, Yaffe K, et al. Plasma nutrient status of patients with Alzheimer’s disease: Systematic review and meta-analysis. Alzheimers Dement, 2013; S1552526013024643

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Marine Haution-Bitker.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Haution-Bitker, M., Gilbert, T., Vignoles, A. et al. Associations between Plasmatic Polyunsaturated Fatty Acids Concentrations and Cognitive Status and Decline in Neurocognitive Disorders. J Nutr Health Aging 22, 718–725 (2018).

Download citation

Key words

  • Dementia
  • neurocognitive disorders
  • biomarkers
  • fatty acids
  • erythrocytes membrane