The journal of nutrition, health & aging

, Volume 22, Issue 6, pp 718–725 | Cite as

Associations between Plasmatic Polyunsaturated Fatty Acids Concentrations and Cognitive Status and Decline in Neurocognitive Disorders

  • Marine Haution-BitkerEmail author
  • T. Gilbert
  • A. Vignoles
  • C. Lecardonnel
  • S. Watelet
  • E. Blond
  • J. Drai
  • M. Bonnefoy



To examine the association of plasmatic and erythrocyte concentrations polyunsaturated fatty acids (PUFA) with both cognitive status and decline.


Longitudinal observational cohort study. Setting: Memory Clinic of Lyon Sud university hospital.


140 patients, aged 60 and older, were referred to the memory clinic, and successively included in the cohort, between March 2010 and February 2014.


Concentration of ω-3 PUFA (eicosapentaenoic: EPA and docosahexaenoic: DHA) and ω-6 PUFA (arachidonic: AA), were measured at baseline in plasma and in the erythrocytes membrane. Cognitive status was assessed using the mini mental state examination (MMSE), at baseline and every six months during follow-up. The median follow-up period was of 11,5 months.


Compared to participants with minor neurocognitive disorders (MMSE≥24), participants with major neurocognitive disorders (NCD) had lower plasmatic concentrations of EPA and DHA (p<0.05) at baseline. Erythrocyte AA and DHA concentrations were significantly lower in patients with cognitive decline (defined as a ≥2 points loss of MMSE per year), while no difference in plasmatic concentrations was observed.


Our study suggests that ω-3 PUFA plasma concentrations (mainly EPA and DHA) could be associated with cognitive status in older people. Moreover, in this exploratory study, lower erythrocyte PUFA concentrations (AA and DHA) were associated with accelerated decline and could be proposed as a surrogate marker for prediction of cognitive decline.

Key words

Dementia neurocognitive disorders biomarkers fatty acids erythrocytes membrane 



arachidonic acid


alpha-linolenic acid


Alzheimer disease


Activities of daily living


linolenic acid


choline phosphoglycerides


Cerebrospinal fluid


docosahexaenoic acid


cholesteryl esters


eicosapentaenoic acid


ethanolamine phosphoglycerides


fatty acids


Instrumental activities of daily living


mild cognitive impairment


mini mental state examination


Magnetic resonance imaging


Neurocognitive disorders


palmitic acid




poly unsaturated fatty acids.

Supplementary material

12603_2018_1010_MOESM1_ESM.pdf (159 kb)


  1. 1.
    Scarmeas N, Stern Y, Tang M-X, Mayeux R, Luchsinger JA. Mediterranean diet and risk for Alzheimer’s disease. 2006; 59(6):912–21.Google Scholar
  2. 2.
    Cederholm T, Salem N, Palmblad J. ω-3. Fatty Acids in the Prevention of Cognitive Decline in Humans 2013;123.4(6):672–6. /PMC3823515/Google Scholar
  3. 3.
    Vellas B, Carrie I, Gillette-Guyonnet S, Touchon J, Dantoine T, Dartigues JF, et al. MAPT Study: A multidomain approch for preventing Alzheimer’s disease: design and baseline data. J Prev Alzheimers Dis;2014;1(1):13–22./PMC4652787/PubMedPubMedCentralGoogle Scholar
  4. 4.
    Fougère B, de Souto Barreto P, Goisser S, Soriano G, Guyonnet S, Andrieu S, et al. Red blood cell membrane omega-3 fatty acid levels and physical performance: Crosssectional data from the MAPT study. Clin Nutr Edinb Scotl. 2017 Apr 12Google Scholar
  5. 5.
    Issa AM, Mojica WA, Morton SC, Traina S, Newberry SJ, Hilton LG, et al. The efficacy of omega-3 fatty acids on cognitive function in aging and dementia: a systematic review. Dement Geriatr Cogn Disord. 2006; 21(2):88–96.CrossRefPubMedGoogle Scholar
  6. 6.
    Yanai H. Effects of N-3 Polyunsaturated Fatty Acids on Dementia. J Clin Med Res;2017;9(1):1–9./PMC5127208/CrossRefPubMedGoogle Scholar
  7. 7.
    Solfrizzi V, Capurso C, D’Introno A, Colacicco AM, Frisardi V, Santamato A, et al. Dietary fatty acids, age-related cognitive decline, and mild cognitive impairment. J Nutr Health Aging. 2008 Jul;12(6):382–6.CrossRefPubMedGoogle Scholar
  8. 8.
    Samieri C, Féart C, Letenneur L, Dartigues J-F, Pérès K, Auriacombe S, et al. Low plasma eicosapentaenoic acid and depressive symptomatology are independent predictors of dementia risk. Am J Clin Nutr [Internet]. 2008 Sep 1 [cited 2014 Jan 24];88(3):714–21. Available from: Scholar
  9. 9.
    Whalley LJ, Deary IJ, Starr JM, Wahle KW, Rance KA, Bourne VJ, et al. n–3 Fatty acid erythrocyte membrane content, APOE ε4, and cognitive variation: an observational follow-up study in late adulthood. Am J Clin Nutr [Internet]. 2008 Feb 1 [cited 2014 Jan 24];87(2):449–54. Available from: Scholar
  10. 10.
    Schuchardt JP, Köbe T, Witte V, Willers J, Gingrich A, Tesky V, et al. Genetic Variants of the FADS Gene Cluster Are Associated with Erythrocyte Membrane LC PUFA Levels in Patients with Mild Cognitive Impairment. J Nutr Health Aging. 2016; 20(6):611–20.CrossRefPubMedGoogle Scholar
  11. 11.
    El Zoghbi M, Boulos C, Amal AH, Saleh N, Awada S, Rachidi S, et al. Association between cognitive function and nutritional status in elderly: A cross-sectional study in three institutions of Beirut—Lebanon. Geriatr Ment Health Care;2013;1(4):73–81.CrossRefGoogle Scholar
  12. 12.
    Eriksdotter M, Vedin I, Falahati F, Freund-Levi Y, Hjorth E, Faxen-Irving G, et al. Plasma Fatty Acid Profiles in Relation to Cognition and Gender in Alzheimer’s Disease Patients During Oral Omega-3 Fatty Acid Supplementation: The OmegAD Study. J Alzheimers Dis JAD. 2015; 48(3):805–12.CrossRefPubMedGoogle Scholar
  13. 13.
    MacLean CH, Issa AM, Newberry SJ, Mojica WA, Morton SC, Garland RH, et al. Effects of Omega-3 Fatty Acids on Cognitive Function with Aging, Dementia, and Neurological Diseases. Agency for Healthcare Research and Quality (US); 2005.Google Scholar
  14. 14.
    Revel F, Gilbert T, Roche S, Drai J, Blond E, Ecochard R, et al. Influence of oxidative stress biomarkers on cognitive decline. J Alzheimers Dis JAD. 2015; 45(2):553–60.PubMedCrossRefGoogle Scholar
  15. 15.
    Cederholm T, Salem N, Palmblad J. ω-3 fatty acids in the prevention of cognitive decline in humans. Adv Nutr Bethesda Md. 2013 Nov;4(6):672–6.CrossRefGoogle Scholar
  16. 16.
    Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975 Nov;12(3):189–98.CrossRefPubMedGoogle Scholar
  17. 17.
    American Psychiatric Association. Diagnostic and statistical manual of mental disorders. (5th ed). Washington, DC; 2013.Google Scholar
  18. 18.
    Sachdev PS, Mohan A, Taylor L, Jeste DV. DSM-5 and mental disorders in older individuals: an overview. Harv Rev Psychiatry [Internet]. 2015 Oct [cited 2017 Nov 27];23(5):320. Available from: PMC4562208/CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, Fox NC, et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement J Alzheimers Assoc;2011;7(3):270–9./PMC3312027/CrossRefGoogle Scholar
  20. 20.
    Portet F, Ousset PJ, Visser PJ, Frisoni GB, Nobili F, Scheltens P, et al. Mild cognitive impairment (MCI) in medical practice: a critical review of the concept and new diagnostic procedure. Report of the MCI Working Group of the European Consortium on Alzheimer’s Disease. J Neurol Neurosurg Psychiatry:2006;714–8./PMC2077456/Google Scholar
  21. 21.
    Dullemeijer C, Durga J, Brouwer IA, Rest O van de Kok FJ, Brummer R-JM, et al. n−3 Fatty acid proportions in plasma and cognitive performance in older adults. Am J Clin Nutr; 2007; 86(5):1479–85.CrossRefPubMedGoogle Scholar
  22. 22.
    Folch J, Ascoli I, Lees M, Meath JA, LeBARON N. Preparation of lipide extracts from brain tissue. J Biol Chem. 1951 Aug;191(2):833–41.PubMedGoogle Scholar
  23. 23.
    Cui Y, Chen X, Liu L, Xie W, Wu Y, Wu Q, et al. Gas chromatography-mass spectrometry analysis of the free fatty acids in serum obtained from patients with Alzheimer’s disease. Biomed Mater Eng. 2015;26 Suppl 1:S2165–2177.PubMedGoogle Scholar
  24. 24.
    Yuan L, Zhen J, Ma W, Cai C, Huang X, Xiao R. The Erythrocyte Fatty Acid Profile and Cognitive Function in Old Chinese Adults. Nutrients. 2016;8(7).Google Scholar
  25. 25.
    Dupuy A, Le Faouder P, Vigor C, Oger C, Galano J-M, Dray C, et al. Simultaneous quantitative profiling of 20 isoprostanoids from omega-3 and omega-6 polyunsaturated fatty acids by LC-MS/MS in various biological samples. Anal Chim Acta. 2016 19;921: 46–58.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Simultaneous quantitative profiling of 20 isoprostanoids from omega-3 and omega-6 polyunsaturated fatty acids by LC-MS/MS in various biological samples. [Internet]. [cited 2016 Jul 5]. Available from: Scholar
  27. 27.
    R Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.; 2014.Google Scholar
  28. 28.
    Ma J, Folsom AR, Shahar E, Eckfeldt JH. Plasma fatty acid composition as an indicator of habitual dietary fat intake in middle-aged adults. The Atherosclerosis Risk in Communities (ARIC) Study Investigators. Am J Clin Nutr. 1995 Sep;62(3):564–71.CrossRefPubMedGoogle Scholar
  29. 29.
    Baylin A, Kim MK, Donovan-Palmer A, Siles X, Dougherty L, Tocco P, et al. Fasting whole blood as a biomarker of essential fatty acid intake in epidemiologic studies: comparison with adipose tissue and plasma. Am J Epidemiol. 2005 Aug 15; 162(4):373–81.CrossRefPubMedGoogle Scholar
  30. 30.
    Arab L. Biomarkers of fat and fatty acid intake. J Nutr. 2003 Mar;133 Suppl 3:925S–932S.CrossRefPubMedGoogle Scholar
  31. 31.
    Beydoun MA, Kaufman JS, Satia JA, Rosamond W, Folsom AR. Plasma n-3 fatty acids and the risk of cognitive decline in older adults: the Atherosclerosis Risk in Communities Study. Am J Clin Nutr. 2007 Apr;85(4):1103–11.CrossRefPubMedGoogle Scholar
  32. 32.
    Huang M-C, Brenna JT, Chao AC, Tschanz C, Diersen-Schade DA, Hung H-C. Differential Tissue Dose Responses of (n-3) and (n-6) PUFA in Neonatal Piglets Fed Docosahexaenoate and Arachidonoate. J Nutr;2007;137(9):2049–55.CrossRefPubMedGoogle Scholar
  33. 33.
    Brenner SR. Red Blood Cell Omega-3 Fatty Acid Levels and Markers of Accelerated Brain Aging. Neurology; 2012;79(1):106–7.CrossRefPubMedGoogle Scholar
  34. 34.
    Ammann EM, Pottala JV, Harris WS, Espeland MA, Wallace R, Denburg NL, et al. ω-3 fatty acids and domain-specific cognitive aging: secondary analyses of data from WHISCA. Neurology. 2013 Oct 22; 81(17):1484–91.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Hodson L, Skeaff CM, Fielding BA. Fatty acid composition of adipose tissue and blood in humans and its use as a biomarker of dietary intake. Prog Lipid Res. 2008 Sep;47(5):348–80.CrossRefPubMedGoogle Scholar
  36. 36.
    Yurko-Mauro K, Alexander DD, Van Elswyk ME. Docosahexaenoic Acid and Adult Memory: A Systematic Review and Meta-Analysis. PLoS ONE [Internet]. 2015 Mar 18 [cited 2016 Aug 7];10(3). Available from: Scholar
  37. 37.
    Mazereeuw G, Lanctôt KL, Chau SA, Swardfager W, Herrmann N. Effects of ω-3 fatty acids on cognitive performance: a meta-analysis. Neurobiol Aging. 2012 Jul;33(7):1482.e17–29.CrossRefGoogle Scholar
  38. 38.
    D’Ascoli TA, Mursu J, Voutilainen S, Kauhanen J, Tuomainen T-P, Virtanen JK. Association between serum long-chain omega-3 polyunsaturated fatty acids and cognitive performance in elderly men and women: The Kuopio Ischaemic Heart Disease Risk Factor Study. Eur J Clin Nutr. 2016 Aug;70(8):970–5.CrossRefPubMedGoogle Scholar
  39. 39.
    Tully AM, Roche HM, Doyle R, Fallon C, Bruce I, Lawlor B, et al. Low serum cholesteryl ester-docosahexaenoic acid levels in Alzheimer’s disease: a case-control study. Br J Nutr. 2003 Apr;89(4):483–9.CrossRefPubMedGoogle Scholar
  40. 40.
    Yin Y, Fan Y, Lin F, Xu Y, Zhang J. Nutrient biomarkers and vascular risk factors in subtypes of mild cognitive impairment: a cross-sectional study. J Nutr Health Aging. 2015 Jan;19(1):39–47.CrossRefPubMedGoogle Scholar
  41. 41.
    Conquer JA, Tierney MC, Zecevic J, Bettger WJ, Fisher RH. Fatty acid analysis of blood plasma of patients with alzheimer’s disease, other types of dementia, and cognitive impairment. Lipids;2000;35(12):1305–12.CrossRefPubMedGoogle Scholar
  42. 42.
    Heude B, Ducimetière P, Berr C. Cognitive decline and fatty acid composition of erythrocyte membranes—The EVA Study. Am J Clin Nutr:2003;803–8.Google Scholar
  43. 43.
    Hooper C, De Souto Barreto P, Payoux P, Salabert AS, Guyonnet S, Andrieu S, et al. Cross-sectional associations of cortical β-amyloid with erythrocyte membrane longchain polyunsaturated fatty acids in older adults with subjective memory complaints. J Neurochem. 2017 Aug;142(4):589–96.CrossRefPubMedGoogle Scholar
  44. 43.
    Lopes da Silva S, Vellas B, Elemans S, Luchsinger J, Kamphuis P, Yaffe K, et al. Plasma nutrient status of patients with Alzheimer’s disease: Systematic review and meta-analysis. Alzheimers Dement, 2013; S1552526013024643Google Scholar

Copyright information

© Serdi and Springer-Verlag France SAS, part of Springer Nature 2018

Authors and Affiliations

  • Marine Haution-Bitker
    • 1
    • 5
    Email author
  • T. Gilbert
    • 1
  • A. Vignoles
    • 1
    • 2
  • C. Lecardonnel
    • 1
  • S. Watelet
    • 1
  • E. Blond
    • 2
    • 3
  • J. Drai
    • 2
  • M. Bonnefoy
    • 1
    • 3
    • 4
  1. 1.Geriatric medicine unit, Lyon Sud academic hospitalHospices Civils de LyonPierre-BéniteFrance
  2. 2.France Biochemistry unit, Lyon Sud academic hospitalHospices Civils de LyonPierre-BéniteFrance
  3. 3.INSERM U1060, CarMen research unit (Cardiovasculaire, métabolisme, diabétologie et nutrition)Université Claude Bernard Lyon 1LyonFrance
  4. 4.Université Claude Bernard Lyon 1LyonFrance
  5. 5.Service de Court Séjour GériatriqueCentre Hospitalier Lyon SudPierre-BéniteFrance

Personalised recommendations