The journal of nutrition, health & aging

, Volume 22, Issue 4, pp 483–490 | Cite as

Cardiorespiratory Adaptations in Elderly Men Following Different Concurrent Training Regimes

  • E. L. Cadore
  • R. S. Pinto
  • J. L. Teodoro
  • L. X. N. da Silva
  • E. Menger
  • C. L. Alberton
  • G. Cunha
  • M. Schumann
  • M. Bottaro
  • F. Zambom-Ferraresi
  • Mikel Izquierdo
Article

Abstract

Background

This study aimed to investigate the effects of different intra-session exercise orders during concurrent training (CT) on endurance performance in elderly men, as well as to verify its influence on individual responses in endurance performance.

Design

Twenty-five healthy elderly men (64.7 ± 4.1 years) were placed into two groups: strength training prior to endurance training (SE, n=13), and one in the reverse order (ES, n=12). CT was performed three times a week during 12 weeks. Before and after training, peak oxygen uptake (VO2peak), maximal workload (Wmax), absolute and relative cycling economy at 25, 50, 75 and 100 W (i.e., average VO2 at different stages) were assessed.

Results

Similar increases in VO2peak were observed in the SE and ES groups (SE: 8.1 ± 9.9%; ES: 9.3 ± 9.8%; P<0.001), as well as in Wmax (SE: 19.9 ± 19.3%; ES: 24.1 ± 24.0%; P<0.001). Moreover, significant reductions were observed in the absolute VO2 at 100 W (P<0.05) in the SE and ES groups. No difference between groups was observed. In the ES group, one subject did not respond positively in terms of both VO2max and Wmax, whereas 4 subjects did not respond positively in terms of both VO2max and Wmax in SE group.

Conclusions

CT improved maximal and submaximal endurance performance in elderly men, independent of intra-session exercise order. However, it seems that the ES order elicited more individual responsiveness in terms of maximal endurance performance than SE order..

Key words

Inter-individual variability functional capacity cycling economy combined training resistance training 

References

  1. 1.
    Fleg JL, Lakatta G. Role of muscle loss in the age-associated reduction in VO2max. J Appl Physiol 2009;65:1147–1151.CrossRefGoogle Scholar
  2. 2.
    Izquierdo M, Hakkinen K, Antón A, Garrues M, Ibañez J, Ruesta, M, Gorostiaga EM. Maximal strength power, endurance performance, and serum hormones in middleaged and elderly men. Med Sci Sports Exer 2001;33:1577–1587.CrossRefGoogle Scholar
  3. 3.
    Izquierdo M, Hakkinen K, Ibanez J, Anton A, Garrues M, Ruesta M, Gorostiaga EM. Effects of strength training on submaximal and maximal endurance performance capacity in middle-aged and older men. J Strength Cond Res 2003;17:129–139.PubMedGoogle Scholar
  4. 4.
    Aagaard P, Suetta C, Caserotti P, Magnusson SP, Kjaer M. Role of the nervous sys-tem in sarcopenia and muscle atrophy with aging: strength training as a countermeasure. Scand J Med Sci Sports 2010;20:49–64.CrossRefPubMedGoogle Scholar
  5. 5.
    Blair SN, Kampert JB, Kohl 3rd HW, Barlow CE, Macera CA, Paffenbarger RS Jr, Gibbons LW. Influences of cardiorespiratory fitness and other precursors on cardiovascular disease and all-cause mortality in men and women. JAMA 1996;276:205–210.CrossRefPubMedGoogle Scholar
  6. 6.
    Farrell SW, Finley CE, Haskell WL, Grundy SM. Is there a gradient of mortality risk among men with low cardiorespiratory fitness? Med Sci Sports Exerc 2014;47:1825–1832.CrossRefGoogle Scholar
  7. 7.
    Cadore, EL, Pinto RS, Alberton CL, Pinto SS, Lhullier LFR, Tartaruga MP, Correa CS, Al-meida APV, Silva EM, Laitano O, Kruel LFM. Neuromuscular economy, strength and endurance in healthy elderly men. J. Strength Cond. Res 2011;25:997–1003.CrossRefPubMedGoogle Scholar
  8. 8.
    Karavirta L, Häkkinen A, Sillanpää E, Garcia-Lopez D, Kauhanen A, Haapasaari A, Alen, M, Pakarinen A, Kramer WJ, Izquierdo M, Gorostiaga EM, Häkkinen K. Effects of combined endurance and strength training on muscle strength, power and hypertrophy in 40-67-year-old men. Scand. J. Med. Sci. Sports 2011;21:401–411.CrossRefGoogle Scholar
  9. 9.
    Izquierdo M, Ibañez J, Häkkinen K, Kraemer WJ, Larrión JL, Gorostiaga EM. Once weekly combined resistance and cardiovascular training in healthy older men. Med Sci Sports Exerc 2004;36:435–443.CrossRefPubMedGoogle Scholar
  10. 10.
    Hartman MJ, Fields DA, Byrne NM, Hunter GR. Resistance training improves meta-bolic economy during functional tasks in older adults. J Strength Cond Res 2007;21:91–95.CrossRefPubMedGoogle Scholar
  11. 11.
    Wood RH, Reyes R, Welsch MA, Favaloro-Sabatier J, Sabatier M, Matthew Lee C, Johnson LG, Hooper PF. Concurrent cardiovascular and resistance training in healthy older adults. Med Sci Sports Exerc 2001;33:1751-1758.CrossRefPubMedGoogle Scholar
  12. 12.
    Sillampää E, Häkkinen A, Punnonen K, Häkkinen K, Laaksonen DE. Effects of strength and endurance training on metabolic risk factors in healthy 40-65-year-old men. Scand J Med Sci Sports 19:885–895.Google Scholar
  13. 13.
    Holviala J, Häkkinen A, Karavirta L, Nyman K, Izquierdo M, Gorostiaga EM, Avela J, Korhonen J, Knuutila VP, Kraemer WJ, Häkkinen K. Effects of combined strength and endurance training on treadmill load carrying walking performance in aging men. J Strength Cond Res 2010;21:1583–1595.Google Scholar
  14. 14.
    Cadore EL, Izquierdo M, Alberton, CL, Pinto RS, Conceição M, Cunha G, Radaelli R, Bottaro M, Trindade GT, Kruel LF. Strength prior to endurance intra-session exercise se-quence optimizes neuromuscular and cardiovascular gains in elderly men. Exp Gerontol 2012;47:164–169.CrossRefPubMedGoogle Scholar
  15. 15.
    Schumann M, Yli-Peltola K, Abbis CR, Häkkinen K. Cardiorespiratory adaptations during concurrent aerobic and strength training in men and women. PLoS One 2015. Doi: 10.1371/journal.pone.0139279.Google Scholar
  16. 16.
    Bouchard C, Rankinen T. Individual differences in response to regular physical activity. Med Sci Sports Exerc 2001;33:446–451.CrossRefGoogle Scholar
  17. 17.
    Skinner JS, Jaskólski A, Jaskólska A, Krasnoff J, Gagnon J, Leon AS, Rao DC, Wilmore JH, Bouchard C. Age, sex, race, initial fitness, and response to training: The HERIT-AGE Family Study. J Appl Physiol 2001;90:1770–1776.CrossRefPubMedGoogle Scholar
  18. 18.
    Sisson SB, Katzmarzyk PT, Earnest CP, Bouchard C, Blair SN, Church TS. Volume of exercise and fitness nonresponse in sedentary, postmenopausal women. Med Sci Sports Exerc 2009;41:539–545.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Alvarez C, Ramírez-Campillo R, Ramírez-Vélez R, Izquierdo M. Effects and Prevalence of Non-Responders after 12 weeks of High-Intensity Interval or Resistance Training in Adult Woman with Insulin Resistance: A Randomized Trial. J Appl Physiol 2017;122:985–996.CrossRefPubMedGoogle Scholar
  20. 20.
    Karavirta L, Häkkinen A, Sillanpää E, García-López D, Kauhanen A, Haapasaari A, Alen M, Pakarinen A, Kraemer WJ, Izquierdo M, Gorostiaga E, Häkkinen, K. Effects of combined endurance and strength training on muscle strength, power and hypertrophy in 40-67-year-old men. Scand J Med Sci Sports 2011;21:401–411.CrossRefGoogle Scholar
  21. 21.
    Bonafiglia JT, Rotundo MP, Whittall JP, Scribbans TD, Graham RB, Gurd, BJ. Inter-Individual variability in the adaptive responses to endurance and Sprint interval training: A randomized crossover study. PLoS One 2016. Doi:10.1371/journal. pone.0167790.Google Scholar
  22. 22.
    Bouchard C, Blair SN, Church TS, Earnest CP, Hagberg JM, Häkkinen K, Jenkins NT, Karavirta L, Kraus WE, Leon AS, Rao DC, Sarzynski MA, Skinner JS, Slentz CA, Rankinen T. Adverse metabolic response to regular exercise: is it a rare of common occurrence? PLoS One, 2012.doi: 10.1371/journal.pone.0037887.Google Scholar
  23. 23.
    Gurd BJ, Giles MD, Bonafiglia JT, Raleigh JP, Boyd JC, Ma JK, Zelt JG, Scribbans TD. Incidence of nonresponse and individual patterns of response following Sprint inter-val training. Appl Physiol Nutr Metab 2016;41:229–234.CrossRefPubMedGoogle Scholar
  24. 24.
    Scharhag-Rosenberger F, Walitzek S, Kindermann W, Meyer T. Differences in adaptations to 1 year of aerobic endurance training: Individual patterns of nonresponse. Scand J Med Sci Sports 2012;22:113–118.CrossRefPubMedGoogle Scholar
  25. 25.
    Cadore EL, Pinto RS, Lhullier FLR, Correa CS, Alberton CL, Pinto SS, Almeida AP, Tarta-ruga MP, Silva EM, Kruel LF. Physiological effects of concurrent training in elderly men. Int J Sports Med 2010;31:689–697.CrossRefPubMedGoogle Scholar
  26. 26.
    Jackson AS, Pollock ML. Generalized equations for predicting body density of men. Brit J Nutr 1978;40:497–504.CrossRefPubMedGoogle Scholar
  27. 27.
    Siri WE. Body composition from fluid spaces and density: analysis of methods. Nu-trition 1993;9:480–491.Google Scholar
  28. 28.
    Hopkins WG. Measures of reliability in sports medicine and Science. Sports Med 2000;30:1–15.CrossRefPubMedGoogle Scholar
  29. 29.
    Izquierdo-Gabarren M, Expósito RGT, García-Pallarés J, Sánchez-Medina L, De Villarreal ES, Izquierdo M. Concurrent endurance and strength training not to failure optimizes performance gains. Med Sci Sports Exerc 2010;41:1191–1199.Google Scholar
  30. 30.
    Hedgess LV, Olkin I. Statistical methods for meta-analysis. 1st ed. Academic Press: Orlando FL p. 369, 1985.Google Scholar
  31. 31.
    Hopkins WG, S.W. Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise Science. Med Sci Sports Exerc 2009;41:3–13.CrossRefPubMedGoogle Scholar
  32. 32.
    Cadore EL, Pinto RS, Lhullier FLR, Correa CS, Alberton CL, Pinto SS, Almeida APV, Tar-taruga MP, Silva EM, Kruel LFM. Effects of strength, endurance and concurrent training on aerobic power and dynamic neuromuscular economy in elderly men. J Strength Cond Res 2011;25:758–766.CrossRefPubMedGoogle Scholar
  33. 33.
    Baar K. Training for endurance and strength: Lessons from cell signaling. Med Sci Sports Exerc 2006;38:1939–1944.CrossRefPubMedGoogle Scholar
  34. 34.
    Conceição M, Cadore EL, González-Izal M, Izquierdo M, Liedtke GV, Wilhelm EN, Pinto RS, Goltz FR, Schneider CD, Ferrari R, Bottaro M, Kruel LFM. Strength training prior to endurance exercise: Impact on the neuromuscular system, endurance performance and cardiorespiratory responses. J Hum Kinet 2014;44:171–181.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Ross R, de Lannoy L, Stotz PJ. Separate effects of Intensity and amount of exercise on interindividual cardiorespiratory fitness response. Mayo Clin Proc 2015;90:1–9.CrossRefGoogle Scholar
  36. 36.
    Scribbans TD, Edgett BA, Vorobej K, Mitchell AS, Joanisse SD, Matusiak JB, Parise G, Quadrilatero J, Gurd BJ. Fibre-specific responses to endurance and low volume high intensity interval training: striking similarities in acute and chronic adaptation. PLoS One, 2014. Doi: 10.1371/journal.pone.0098119.Google Scholar
  37. 37.
    Montero D, Cathomen A, Jacobs RA, Flück D, de Leur J, Keiser S, Bonne T, Kirk N, Lundby AK, Lundby C. Haematological rather than skeletal muscle adaptations con-tribute to the increase in peak oxygen uptake induced by moderate endurance training. J Physiol 2015;593:4677–4688.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Astorino TA, Schubert MM. Individual responses to completion of short-term and chronic interval training: A retrospective study. PLoS One, 2014. Soi: 10.1371/ journal.pone.0097638.Google Scholar
  39. 39.
    Churchward-Venne TA, Tieland M, Verdijk LB, Leenders M, Dirks ML, de Groot LC, van Loon LJ. There are no nonresponders to resistance-type exercise training in older men and women. J Am Med Dir Assoc 2015;16:400–411.CrossRefPubMedGoogle Scholar
  40. 40.
    Montero D, Lundby C. Refuting the myth of non-response to exercise training: ‘non-responders’ do respond to higher dose of training. J Physiol 2017 doi: 10.1113/ JP273480.Google Scholar

Copyright information

© Serdi and Springer-Verlag France SAS, part of Springer Nature 2017

Authors and Affiliations

  • E. L. Cadore
    • 1
  • R. S. Pinto
    • 1
  • J. L. Teodoro
    • 1
  • L. X. N. da Silva
    • 1
  • E. Menger
    • 1
  • C. L. Alberton
    • 2
  • G. Cunha
    • 1
  • M. Schumann
    • 3
  • M. Bottaro
    • 4
  • F. Zambom-Ferraresi
    • 5
  • Mikel Izquierdo
    • 5
    • 6
  1. 1.Exercise Research LaboratoryFederal University of Rio Grande do SulPorto AlegreBrazil
  2. 2.Physical Education SchoolFederal University of PelotasPelotasBrazil
  3. 3.Department of Molecular and Cellular Sport MedicineGerman Sport University CologneCologneGermany
  4. 4.College of Physical EducationUniversity of BrasíliaBrasíliaBrazil
  5. 5.Department of Health SciencesPublic University of Navarre, CIBER de Fragilidad y Envejecimiento Saludable (CB16/10/00315)Tudela, NavarreSpain
  6. 6.Department of Health SciencesPublic University of Navarra (Navarra) Spain, Campus of TudelaTudela (Navarra)Spain

Personalised recommendations