Abstract
Objectives
There is increasing attention for dietary patterns as a potential strategy to prevent cognitive decline. We examined the association between adherence to a recently developed Mediterranean-DASH Intervention for Neurodegenerative Delay (MIND) diet with cognitive function and cognitive decline, taking into account the interaction between the apolipoprotein E ε4 genotype and the MIND diet.
Design
Population-based prospective cohort study.
Participants
A total of 16,058 older women aged 70 and over from the Nurses’ Health Study.
Measurements
Dietary intake was assessed five times between 1984 and 1998 with a 116-item Food Frequency Questionnaire. The MIND score includes ten brain-healthy foods and five unhealthy foods. Cognition was assessed four times by telephone from 1995 to 2001 (baseline) with the Telephone Interview for Cognitive Status (TICS) and by calculating composite scores of verbal memory and global cognition. Linear regression modelling and linear mixed modelling were used to examine the associations of adherence to the MIND diet with average cognitive function and cognitive change over six years, respectively.
Results
Greater long-term adherence to the MIND diet was associated with a better verbal memory score (multivariable-adjusted mean differences between extreme MIND quintiles=0.04 (95%CI 0.01-0.07), p-trend=0.006), but not with cognitive decline over 6 years in global cognition, verbal memory or TICS.
Conclusion
Long-term adherence to the MIND diet was moderately associated with better verbal memory in later life. Future studies should address this association within populations at greater risk of cognitive decline.
This is a preview of subscription content, access via your institution.
References
United Nations. Department of Economic and Social Affairs. Population Division. World Population Ageing 2013. 2013 Contract No.: ST/ESA/SER.A/348.
World Health Organization. 10 facts on ageing and the life course Geneva, Switzerland, 2012 [cited 2015 15-06-2015]. Available from: http://www.who.int/ features/factfiles/ageing/ageing_facts/en/index3.html.
Nelson L, Tabet N. Slowing the progression of Alzheimer’s disease; what works? Ageing Res Rev. 2015;23:193–209.
van de Rest O, Berendsen AM, Haveman-Nies A, de Groot CPGM. Dietary patterns, cognitive decline, and dementia: a systematic review. Adv Nutr. 2015;6(2):154–68.
Smith PJ, Blumenthal JA, Babyak MA, Craighead L, Welsh-Bohmer KA, Browndyke JN, et al. Effects of the dietary approaches to stop hypertension diet, exercise, and caloric restriction on neurocognition in overweight adults with high blood pressure. Hypertension. 2010;55(6):1331–8.
Tangney CC, Li H, Wang Y, Barnes L, Schneider JA, Bennett DA, et al. Relation of DASH-and Mediterranean-like dietary patterns to cognitive decline in older persons. Neurology. 2014;83(16):1410–6.
Wengreen H, Munger RG, Cutler A, Quach A, Bowles A, Corcoran C, et al. Prospective study of Dietary Approaches to Stop Hypertension-and Mediterraneanstyle dietary patterns and age-related cognitive change: the Cache County Study on Memory, Health and Aging. Am J Clin Nutr. 2013;98(5):1263–71.
Berendsen AM, Kang JH, Van de Rest O, Feskens E, De Groot CPGM, Grodstein F. Adherence to the Dietary Approaches to Stop Hypertension diet, cognitive function and cognitive decline in American older women. unpublished results.
Morris MC, Tangney CC, Wang Y, Sacks FM, Bennett DA, Aggarwal NT. MIND diet associated with reduced incidence of Alzheimer’s disease. Alzheimers Dement. 2015;11(9):1007–14.
Morris MC, Tangney CC, Wang Y, Sacks FM, Barnes LL, Bennett DA, et al. MIND diet slows cognitive decline with aging. Alzheimers Dement. 2015;11(9):1015–22.
Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small GW, et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science. 1993;261(5123):921–3.
Wilson RS, Schneider JA, Barnes LL, Beckett LA, Aggarwal NT, Cochran EJ, et al. The apolipoprotein E epsilon 4 allele and decline in different cognitive systems during a 6-year period. Arch Neurol. 2002;59(7):1154–60.
Barberger-Gateau P, Raffaitin C, Letenneur L, Berr C, Tzourio C, Dartigues JF, et al. Dietary patterns and risk of dementia: the Three-City cohort study. Neurology. 2007;69(20):1921–30.
Martinez-Lapiscina EH, Galbete C, Corella D, Toledo E, Buil-Cosiales P, Salas-Salvado J, et al. Genotype patterns at CLU, CR1, PICALM and APOE, cognition and Mediterranean diet: the PREDIMED-NAVARRA trial. Genes Nutr. 2014;9(3):393–7.
Gardener SL, Rainey-Smith SR, Barnes MB, Sohrabi HR, Weinborn M, Lim YY, et al. Dietary patterns and cognitive decline in an Australian study of ageing. Mol Psychiatry. 2015;20(7):860–6.
Cherbuin N, Anstey KJ. The Mediterranean diet is not related to cognitive change in a large prospective investigation: the PATH Through Life study. Am J Geriatr Psychiatry. 2012;20(7):635–9.
Roberts RO, Geda YE, Cerhan JR, Knopman DS, Cha RH, Christianson TJ, et al. Vegetables, unsaturated fats, moderate alcohol intake, and mild cognitive impairment. Dementia and geriatric cognitive disorders. 2010;29(5):413–23.
Willett WC, Sampson L, Stampfer MJ, Rosner B, Bain C, Witschi J, et al. Reproducibility and validity of a semiquantitative food frequency questionnaire. Am J Epidemiol. 1985;122(1):51–65.
Launer LJ. The epidemiologic study of dementia: a life-long quest? Neurobiol Aging. 2005;26(3):335–40.
Brandt J, Spencer M, Folstein M. The telephone interview for cognitive status. Neuropsychiatry Neuropsychol Behav Neurol. 1988;1:111–7.
Albert M, Smith LA, Scherr PA, Taylor JO, Evans DA, Funkenstein HH. Use of brief cognitive tests to identify individuals in the community with clinically diagnosed Alzheimer’s disease. Int J Neurosci. 1991;57(3-4):167–78.
Folstein MF, Folstein SE, McHugh PR. «Mini-mental state». A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12(3):189–98.
Morris JC, Heyman A, Mohs RC, Hughes JP, van Belle G, Fillenbaum G, et al. The Consortium to Establish a Registry for Alzheimer’s Disease (CERAD). Part I. Clinical and neuropsychological assessment of Alzheimer’s disease. Neurology. 1989;39(9):1159–65.
Devore EE, Kang JH, Stampfer MJ, Grodstein F. The association of antioxidants and cognition in the Nurses’ Health Study. Am J Epidemiol. 2013;177(1):33–41.
Samieri C, Okereke OI, Devore EE, Grodstein F. Long-term adherence to the Mediterranean diet is associated with overall cognitive status, but not cognitive decline, in women. J Nutr. 2013;143(4):493–9.
Laird NM, Ware JH. Random-effects models for longitudinal data. Biometrics. 1982;38(4):963–74.
Morris MC, Tangney CC. Dietary fat composition and dementia risk. Neurobiol Aging. 2014;35(Suppl 2):S59–64.
Calon F, Lim GP, Yang F, Morihara T, Teter B, Ubeda O, et al. Docosahexaenoic acid protects from dendritic pathology in an Alzheimer’s disease mouse model. Neuron. 2004;43(5):633–45.
Lim GP, Calon F, Morihara T, Yang F, Teter B, Ubeda O, et al. A diet enriched with the omega-3 fatty acid docosahexaenoic acid reduces amyloid burden in an aged Alzheimer mouse model. J Neurosci. 2005;25(12):3032–40.
Jiang Q, Ames BN. Gamma-tocopherol, but not alpha-tocopherol, decreases proinflammatory eicosanoids and inflammation damage in rats. FASEB J. 2003;17(8):816–22.
Yamada K, Tanaka T, Han D, Senzaki K, Kameyama T, Nabeshima T. Protective effects of idebenone and alpha-tocopherol on beta-amyloid-(1-42)-induced learning and memory deficits in rats: implication of oxidative stress in beta-amyloid-induced neurotoxicity in vivo. Eur J Neurosci. 1999;11(1):83–90.
Chan A, Shea TB. Folate deprivation increases presenilin expression, gammasecretase activity, and Abeta levels in murine brain: potentiation by ApoE deficiency and alleviation by dietary S-adenosyl methionine. J Neurochem. 2007;102(3):753–60.
Katayama S, Ogawa H, Nakamura S. Apricot carotenoids possess potent antiamyloidogenic activity in vitro. J Agric Food Chem. 2011;59(23):12691–6.
Nishida Y, Ito S, Ohtsuki S, Yamamoto N, Takahashi T, Iwata N, et al. Depletion of vitamin E increases amyloid beta accumulation by decreasing its clearances from brain and blood in a mouse model of Alzheimer disease. J Biol Chem. 2009;284(48):33400–8.
Obulesu M, Dowlathabad MR, Bramhachari PV. Carotenoids and Alzheimer’s disease: an insight into therapeutic role of retinoids in animal models. Neurochem Int. 2011;59(5):535–41.
Duron E, Hanon O. Hypertension, cognitive decline and dementia. Arch Cardiovasc Dis. 2008;101(3):181–9.
Saunders AM, Strittmatter WJ, Schmechel D, George-Hyslop PH, Pericak-Vance MA, Joo SH, et al. Association of apolipoprotein E allele epsilon 4 with late-onset familial and sporadic Alzheimer’s disease. Neurology. 1993;43(8):1467–72.
Feskens EJ, Havekes LM, Kalmijn S, de Knijff P, Launer LJ, Kromhout D. Apolipoprotein e4 allele and cognitive decline in elderly men. BMJ. 1994;309(6963):1202–6.
Devore EE, Kang JH, Breteler MM, Grodstein F. Dietary intakes of berries and flavonoids in relation to cognitive decline. Annals of neurology. 2012;72(1):135–43.
Hu FB, Stampfer MJ, Rimm E, Ascherio A, Rosner BA, Spiegelman D, et al. Dietary fat and coronary heart disease: a comparison of approaches for adjusting for total energy intake and modeling repeated dietary measurements. Am J Epidemiol. 1999;149(6):531–40.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Berendsen, A.M., Kang, J.H., Feskens, E.J.M. et al. Association of long-term adherence to the mind diet with cognitive function and cognitive decline in American women. J Nutr Health Aging 22, 222–229 (2018). https://doi.org/10.1007/s12603-017-0909-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12603-017-0909-0
Key words
- Cognition
- dietary pattern
- MIND
- Mediterranean
- DASH