The journal of nutrition, health & aging

, Volume 21, Issue 4, pp 354–361 | Cite as

Reduced intestinal motility, mucosal barrier function, and inflammation in aged monkeys

  • E. L. Mitchell
  • A. T. Davis
  • K. Brass
  • M. Dendinger
  • R. Barner
  • R. Gharaibeh
  • A. A. Fodor
  • Kylie Kavanagh
Article

Abstract

Objective

We aimed to examine the general health and intestinal physiology of young and old non-human primates with comparable life histories and dietary environments.

Design

Vervet monkeys (Chlorcebus aethiops sabaeus) in stable and comparable social and nutritional environments were selected for evaluation. Health phenotype, circulating cytokines and biomarkers of microbial translocation (MT) were measured (n=26-44). Subsets of monkeys additionally had their intestinal motility, intestinal permeability, and fecal microbiomes characterized. These outcomes document age-related intestinal changes present in the absence of nutritional stressors, which are all known to affect gastrointestinal motility, microbiome, and MT.

Results

We found that old monkeys have greater systemic inflammation and poor intestinal barrier function as compared to young monkeys. Old monkeys have dramatically reduced intestinal motility, and all changes in motility and MT are present without large differences in fecal microbiomes.

Conclusion

We conclude that deteriorating intestinal function is a feature of normal aging and could represent the source of inflammatory burden yet to be explained by disease or diet in normal aging human primate populations. Intestinal changes were seen independent of dietary influences and aging within a consistent environment appears to avoid major microbiome shifts. Our data suggests interventions to promote intestinal motility and mucosal barrier function have the potential to support better health with aging.

Key words

Intestinal microbial translocation microbiome inflammation aging monkey motility 

References

  1. 1.
    Collerton, J., Martin-Ruiz, C., Davies, K., Hilkens, C. M., Isaacs, J., Kolenda, C., Parker, C., Dunn, M., Catt, M., Jagger, C., von Zglinicki, T., and Kirkwood, T. B. Frailty and the role of inflammation, immunosenescence and cellular ageing in the very old: cross-sectional findings from the Newcastle 85+ Study. Mech Ageing Dev 2012;133, 456–466CrossRefPubMedGoogle Scholar
  2. 2.
    Adriaensen, W., Mathei, C., Vaes, B., van Pottelbergh, G., Wallemacq, P., and Degryse, J. M. Interleukin-6 predicts short-term global functional decline in the oldest old: results from the BELFRAIL study. Age 2014;36, 9723CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Atzmon, G., Schechter, C., Greiner, W., Davidson, D., Rennert, G., and Barzilai, N. Clinical phenotype of families with longevity. J Am Geriatr Soc 2004;52, 274–277CrossRefPubMedGoogle Scholar
  4. 4.
    Shimizu, I., Yoshida, Y., Suda, M., and Minamino, T. (2014) DNA damage response and metabolic disease. Cell metabolism 2014;20, 967–977CrossRefPubMedGoogle Scholar
  5. 5.
    Levine, M. E., and Crimmins, E. M. The impact of insulin resistance and inflammation on the association between sarcopenic obesity and physical functioning. Obesity (Silver Spring) 2012;20, 2101–2106CrossRefGoogle Scholar
  6. 6.
    Payette, H., Roubenoff, R., Jacques, P. F., Dinarello, C. A., Wilson, P. W., Abad, L. W., and Harris, T. Insulin-like growth factor-1 and interleukin 6 predict sarcopenia in very old community-living men and women: the Framingham Heart Study. J Am Geriatr Soc 2003;51, 1237–1243CrossRefPubMedGoogle Scholar
  7. 7.
    Souza, R. B., and Powers, C. M. Differences in hip kinematics, muscle strength, and muscle activation between subjects with and without patellofemoral pain. J Orthop Sports Phys Ther 2009;39, 12–19CrossRefPubMedGoogle Scholar
  8. 8.
    Schaap, L. A., Pluijm, S. M., Deeg, D. J., Harris, T. B., Kritchevsky, S. B., Newman, A. B., Colbert, L. H., Pahor, M., Rubin, S. M., Tylavsky, F. A., and Visser, M. Higher inflammatory marker levels in older persons: associations with 5-year change in muscle mass and muscle strength. J Gerontol A Biol Sci Med Sci 2009;64, 1183–1189CrossRefPubMedGoogle Scholar
  9. 9.
    Ogawa, K., Kim, H. K., Shimizu, T., Abe, S., Shiga, Y., and Calderwood, S. K. Plasma heat shock protein 72 as a biomarker of sarcopenia in elderly people. Cell Stress Chaperones 2012;17, 349–359CrossRefPubMedGoogle Scholar
  10. 10.
    Ghosh, S., Lertwattanarak, R., Garduno Jde, J., Galeana, J. J., Li, J., Zamarripa, F., Lancaster, J. L., Mohan, S., Hussey, S., and Musi, N. Elevated muscle TLR4 expression and metabolic endotoxemia in human aging. J Gerontol A Biol Sci Med Sci 2015;70, 232–246CrossRefPubMedGoogle Scholar
  11. 11.
    Stehle, J. R., Leng, X., Kitzman, D. W., Nicklas, B. J., Kritchevsky, S. B., and High, K. P. Lipopolysaccharide-binding protein, a surrogate marker of microbial translocation, is associated with physical function in healthy older adults. J Gerontol A Biol Sci Med Sci 2012;67, 1212–1218CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Rodriguez-Miguelez, P., Fernandez-Gonzalo, R., Collado, P. S., Almar, M., Martinez-Florez, S., de Paz, J. A., Gonzalez-Gallego, J., and Cuevas, M. J. Wholebody vibration improves the anti-inflammatory status in elderly subjects through tolllike receptor 2 and 4 signaling pathways. Mech Ageing Dev 2015;150, 12–19CrossRefPubMedGoogle Scholar
  13. 13.
    Rera, M., Clark, R. I., and Walker, D. W. Intestinal barrier dysfunction links metabolic and inflammatory markers of aging to death in Drosophila. Proc Natl Acad Sci U S A 2012;109, 21528–21533CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Everard, A., Belzer, C., Geurts, L., Ouwerkerk, J. P., Druart, C., Bindels, L. B., Guiot, Y., Derrien, M., Muccioli, G. G., Delzenne, N. M., de Vos, W. M., and Cani, P. D. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci U S A 2013;110, 9066–9071CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Tiihonen, K., Ouwehand, A. C., and Rautonen, N. Human intestinal microbiota and healthy ageing. Ageing research reviews 2010;9, 107–116CrossRefPubMedGoogle Scholar
  16. 16.
    Claesson, M. J., Jeffery, I. B., Conde, S., Power, S. E., O’Connor, E. M., Cusack, S., Harris, H. M., Coakley, M., Lakshminarayanan, B., O’Sullivan, O., Fitzgerald, G. F., Deane, J., O’Connor, M., Harnedy, N., O’Connor, K., O’Mahony, D., van Sinderen, D., Wallace, M., Brennan, L., Stanton, C., Marchesi, J. R., Fitzgerald, A. P., Shanahan, F., Hill, C., Ross, R. P., and O’Toole, P. W. Gut microbiota composition correlates with diet and health in the elderly. Nature 2012;488, 178–184PubMedGoogle Scholar
  17. 17.
    Haberthur, K., Engelman, F., Barron, A., and Messaoudi, I. Immune senescence in aged nonhuman primates. Exp Gerontol 2010;45, 655–661CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Morley, J. E. Constipation and irritable bowel syndrome in the elderly. Clinics in geriatric medicine 2007;23, 823–832, vi-viiCrossRefPubMedGoogle Scholar
  19. 19.
    Amar, J., Burcelin, R., Ruidavets, J. B., Cani, P. D., Fauvel, J., Alessi, M. C., Chamontin, B., and Ferrieres, J. Energy intake is associated with endotoxemia in apparently healthy men. Am J Clin Nutr 2008;87, 1219–1223PubMedGoogle Scholar
  20. 20.
    Cani, P. D., Bibiloni, R., Knauf, C., Waget, A., Neyrinck, A. M., Delzenne, N. M., and Burcelin, R. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 2008;57, 1470–1481CrossRefPubMedGoogle Scholar
  21. 21.
    Kavanagh, K., Wylie, A. T., Tucker, K. L., Hamp, T. J., Gharaibeh, R. Z., Fodor, A. A., and Cullen, J. M. Dietary fructose induces endotoxemia and hepatic injury in calorically controlled primates. American Journal of Clinical Nutrition 2013;98, 349–357CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Atkins, H. M., Willson, C. J., Silverstein, M., Jorgensen, M., Floyd, E., Kaplan, J. R., and Appt, S. E. Characterization of ovarian aging and reproductive senescence in vervet monkeys (Chlorocebus aethiops sabaeus). Comparative medicine 2014;64, 55–62PubMedPubMedCentralGoogle Scholar
  23. 23.
    Kavanagh, K., Fairbanks, L. A., Bailey, J. N., Jorgensen, M. J., Wilson, M., Zhang, L., Rudel, L. L., and Wagner, J. D. Characterization and heritability of obesity and associated risk factors in vervet monkeys. Obesity (Silver Spring) 2007;15, 1666–1674CrossRefGoogle Scholar
  24. 24.
    Beaufrere, A. M., Neveux, N., Patureau Mirand, P., Buffiere, C., Marceau, G., Sapin, V., Cynober, L., and Meydinal-Denis, D. Long-term intermittent glutamine supplementation repairs intestinal damage (structure and functional mass) with advanced age: assessment with plasma citrulline in a rodent model. The journal of nutrition, health & aging 2014;18, 814–819CrossRefGoogle Scholar
  25. 25.
    Park, Y. W., Zhu, S., Palaniappan, L., Heshka, S., Carnethon, M. R., and Heymsfield, S. B. The metabolic syndrome: prevalence and associated risk factor findings in the US population from the Third National Health and Nutrition Examination Survey, 1988-1994. Arch Intern Med 2003;163, 427–436CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Einstein, F. H., Huffman, D. M., Fishman, S., Jerschow, E., Heo, H. J., Atzmon, G., Schechter, C., Barzilai, N., and Muzumdar, R. H. Aging per se increases the susceptibility to free fatty acid-induced insulin resistance. J Gerontol A Biol Sci Med Sci 2010;65, 800–808CrossRefPubMedGoogle Scholar
  27. 27.
    Timmerman, K. L., Lee, J. L., Fujita, S., Dhanani, S., Dreyer, H. C., Fry, C. S., Drummond, M. J., Sheffield-Moore, M., Rasmussen, B. B., and Volpi, E. Pharmacological vasodilation improves insulin-stimulated muscle protein anabolism but not glucose utilization in older adults. Diabetes 2010;59, 2764–2771CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Tran, L., and Greenwood-Van Meerveld, B. Age-associated remodeling of the intestinal epithelial barrier. J Gerontol A Biol Sci Med Sci 2013;68, 1045–1056CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    McDougal, J. N., Miller, M. S., Burks, T. F., and Kreulen, D. L. Age-related changes in colonic function in rats. The American journal of physiology 1984;247, G542–546PubMedGoogle Scholar
  30. 30.
    Southwell, B. R., Koh, T. L., Wong, S. Q., King, S. K., Ong, S. Y., Lee, M., Farmer, P. J., Peck, C. J., Sutcliffe, J. R., Stanton, M. P., Keck, J., Cook, D. J., Chow, C. W., and Hutson, J. M. Decrease in nerve fibre density in human sigmoid colon circular muscle occurs with growth but not aging. Neurogastroenterology and motility: the official journal of the European Gastrointestinal Motility Society 2010;22, 439–445, e106CrossRefGoogle Scholar
  31. 31.
    Bitar, K., Greenwood-Van Meerveld, B., Saad, R., and Wiley, J. W. Aging and gastrointestinal neuromuscular function: insights from within and outside the gut. Neurogastroenterology and motility: the official journal of the European Gastrointestinal Motility Society 2011;23, 490–501CrossRefGoogle Scholar
  32. 32.
    Martinez, C., Gonzalez-Castro, A., Vicario, M., and Santos, J. Cellular and molecular basis of intestinal barrier dysfunction in the irritable bowel syndrome. Gut and liver 2012;6, 305–315CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Costilla, V. C., and Foxx-Orenstein, A. E. Constipation: understanding mechanisms and management. Clinics in geriatric medicine 2014;30, 107–115CrossRefPubMedGoogle Scholar
  34. 34.
    Saffrey, M. J. Aging of the mammalian gastrointestinal tract: a complex organ system. Age 2014;36, 9603CrossRefPubMedGoogle Scholar
  35. 35.
    Bitar, K. N., and Patil, S. B. Aging and gastrointestinal smooth muscle. Mech Ageing Dev 125, 907-910Google Scholar
  36. 36.
    Choi, S. J., Shively, C. A., Register, T. C., Feng, X., Stehle, J., High, K., Ip, E., Kritchevsky, S. B., Nicklas, B., and Delbono, O. Force-generation capacity of single vastus lateralis muscle fibers and physical function decline with age in African green vervet monkeys. J Gerontol A Biol Sci Med Sci 2012;68, 258–267CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Blijlevens, N. M., Donnelly, J. P., and DePauw, B. E. Inflammatory response to mucosal barrier injury after myeloablative therapy in allogeneic stem cell transplant recipients. Bone marrow transplantation 2005;36, 703–707CrossRefPubMedGoogle Scholar
  38. 38.
    Crenn, P., Coudray-Lucas, C., Thuillier, F., Cynober, L., and Messing, B. Postabsorptive plasma citrulline concentration is a marker of absorptive enterocyte mass and intestinal failure in humans. Gastroenterology 2000;119, 1496–1505CrossRefPubMedGoogle Scholar
  39. 39.
    Gunther, C., Buchen, B., Neurath, M. F., and Becker, C. Regulation and pathophysiological role of epithelial turnover in the gut. Seminars in cell & developmental biology 2014;35, 40–50CrossRefGoogle Scholar
  40. 40.
    DelaRosa, O., Pawelec, G., Peralbo, E., Wikby, A., Mariani, E., Mocchegiani, E., Tarazona, R., and Solana, R. Immunological biomarkers of ageing in man: changes in both innate and adaptive immunity are associated with health and longevity. Biogerontology 2006;7, 471–481CrossRefPubMedGoogle Scholar
  41. 41.
    Ulgherait, M., Rana, A., Rera, M., Graniel, J., and Walker, D. W. AMPK modulates tissue and organismal aging in a non-cell-autonomous manner. Cell reports 2014;8, 1767–1780CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Goodrich, J. K., Waters, J. L., Poole, A. C., Sutter, J. L., Koren, O., Blekhman, R., Beaumont, M., Van Treuren, W., Knight, R., Bell, J. T., Spector, T. D., Clark, A. G., and Ley, R. E. Human genetics shape the gut microbiome. Cell 2014;159, 789–799Google Scholar
  43. 43.
    Wu, G. D., Chen, J., Hoffmann, C., Bittinger, K., Chen, Y. Y., Keilbaugh, S. A., Bewtra, M., Knights, D., Walters, W. A., Knight, R., Sinha, R., Gilroy, E., Gupta, K., Baldassano, R., Nessel, L., Li, H., Bushman, F. D., and Lewis, J. D. Linking longterm dietary patterns with gut microbial enterotypes. Science 2011;334, 105–108CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Lakshminarayanan, B., Stanton, C., O’Toole, P. W., and Ross, R. P. Compositional dynamics of the human intestinal microbiota with aging: implications for health. The journal of nutrition, health & aging 2014;18, 773–786CrossRefGoogle Scholar
  45. 45.
    Wei, X., Yang, Z., Rey, F. E., Ridaura, V. K., Davidson, N. O., Gordon, J. I., and Semenkovich, C. F. Fatty acid synthase modulates intestinal barrier function through palmitoylation of mucin 2. Cell host & microbe 2012;11, 140–152CrossRefGoogle Scholar
  46. 46.
    Sharma, R., Young, C., and Neu, J. Molecular modulation of intestinal epithelial barrier: contribution of microbiota. Journal of biomedicine & biotechnology 2010, 305879Google Scholar
  47. 47.
    Bruce-Keller, A. J., Salbaum, J. M., Luo, M., Blanchard, E. T., Taylor, C. M., Welsh, D. A., and Berthoud, H. R. Obese-type Gut Microbiota Induce Neurobehavioral Changes in the Absence of Obesity. Biological psychiatry 2015;77, 607–615CrossRefPubMedGoogle Scholar
  48. 48.
    Sanchez, M., Panahi, S., and Tremblay, A. Childhood obesity: a role for gut microbiota? International journal of environmental research and public health 2015;12, 162–175CrossRefGoogle Scholar
  49. 49.
    Cani, P. D., Amar, J., Iglesias, M. A., Poggi, M., Knauf, C., Bastelica, D., Neyrinck, A. M., Fava, F., Tuohy, K. M., Chabo, C., Waget, A., Delmee, E., Cousin, B., Sulpice, T., Chamontin, B., Ferrieres, J., Tanti, J. F., Gibson, G. R., Casteilla, L., Delzenne, N. M., Alessi, M. C., and Burcelin, R. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 2007;56, 1761–1772CrossRefPubMedGoogle Scholar
  50. 50.
    Moreno-Navarrete, J. M., Ortega, F., Serino, M., Luche, E., Waget, A., Pardo, G., Salvador, J., Ricart, W., Fruhbeck, G., Burcelin, R., and Fernandez-Real, J. M. Circulating lipopolysaccharide-binding protein (LBP) as a marker of obesity-related insulin resistance. Int J Obes (Lond) 2011;36, 1442–1449CrossRefGoogle Scholar

Copyright information

© Serdi and Springer-Verlag France 2017

Authors and Affiliations

  • E. L. Mitchell
    • 1
  • A. T. Davis
    • 2
  • K. Brass
    • 2
  • M. Dendinger
    • 2
  • R. Barner
    • 4
  • R. Gharaibeh
    • 3
    • 4
  • A. A. Fodor
    • 3
  • Kylie Kavanagh
    • 2
  1. 1.Animal Resources ProgramWake Forest School of MedicineWinston-SalemUSA
  2. 2.Department of Pathology, Section on Comparative MedicineWake Forest School of MedicineWinston-SalemUSA
  3. 3.Department of Bioinformatics and GenomicsUniversity of North Carolina at CharlotteCharlotteUSA
  4. 4.Bioinformatics Services Division, Department of Bioinformatics and GenomicsUniversity of North Carolina at CharlotteKannapolisUSA

Personalised recommendations