The journal of nutrition, health & aging

, Volume 19, Issue 3, pp 250–257 | Cite as

Frailty and nutrition: Searching for evidence

  • Marc Bonnefoy
  • G. Berrut
  • B. Lesourd
  • M. Ferry
  • T. Gilbert
  • O. Guerin
  • O. Hanon
  • C. Jeandel
  • E. Paillaud
  • A. Raynaud-Simon
  • G. Ruault
  • Y. Rolland
Article

Abstract

Frailty is a geriatric syndrome that predicts disability, morbidity and mortality in the elderly. Poor nutritional status is one of the main risk factors for frailty. Macronutrients and micronutrients deficiencies are associated with frailty. Recent studies suggest that improving nutritional status for macronutrients and micronutrients may reduce the risk of frailty. Specific diets such as the Mediterranean diet rich in anti-oxidants, is currently investigated in the prevention of frailty. The aim of this paper is to summarize the current body of knowledge on the relations between nutrition and frailty, and provide recommendations for future nutritional research on the field of frailty.

Key words

Nutrition frailty elderly 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fried LP, Tangen CM, Walston J, Newman AB, Hirsch C, Gottdiener J, et al. Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci. 2001r;56(3):M146–156.CrossRefGoogle Scholar
  2. 2.
    Bartali B, Frongillo EA, Bandinelli S, Lauretani F, Semba RD, Fried LP, et al. Low nutrient intake is an essential component of frailty in older persons. J Gerontol A Biol Sci Med Sci. 2006;61(6):589–93.PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Ferrucci L, Guralnik JM, Studenski S, Fried LP, Cutler GB Jr, Walston JD. Designing randomized, controlled trials aimed at preventing or delaying functional decline and disability in frail, older persons: a consensus report. J Am Geriatr Soc. 2004;52(4):625–34.PubMedCrossRefGoogle Scholar
  4. 4.
    Clegg A, Young J, Iliffe S, Rikkert MO, Rockwood K. Frailty in elderly people. Lancet. 2013;2;381(9868):752–62.CrossRefGoogle Scholar
  5. 5.
    Berrut G, Andrieu S, Araujo de Carvalho I, Baeyens JP, Bergman H, Cassim B, et al. Promoting access to innovation for frail old persons. IAGG (International Association of Gerontology and Geriatrics), WHO (World Health Organization) and SFGG (Société Française de Gériatrie et de Gérontologie) Workshop—Athens January 20–21, 2012. J Nutr Health Aging. 2013;17(8):688–93.PubMedCrossRefGoogle Scholar
  6. 6.
    Bollwein J, Volkert D, Diekmann R, Kaiser MJ, Uter W, Vidal K, et al. Nutritional status according to the mini nutritional assessment (MNA®) and frailty in community dwelling older persons: a close relationship. J Nutr Health Aging. 2013;17(4):351–6.PubMedCrossRefGoogle Scholar
  7. 7.
    Dorner TE, Luger E, Tschinderle J, Stein KV, Haider S, Kapan A, et al. Association between Nutritional Status (MNA®-SF) and Frailty (SHARE-FI) in Acute Hospitalised Elderly Patients. J Nutr Health Aging. 2014;18(3):264–9.PubMedCrossRefGoogle Scholar
  8. 8.
    Martínez-Reig M, Gómez-Arnedo L, Alfonso-Silguero SA, Juncos-Martínez G, Romero L, Abizanda P. Nutritional Risk, Nutritional Status and Incident Disability in Older Adults. The FRADEA Study. J Nutr Health Aging. 2014;18(3):270–6.PubMedCrossRefGoogle Scholar
  9. 9.
    Martone AM, Onder G, Vetrano DL, Ortolani E, Tosato M, Marzetti E, et al. Anorexia of aging: a modifiable risk factor for frailty. Nutrients. 2013;5(10):4126–33.PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Inzitari M, Doets E, Bartali B, Benetou V, Di Bari M, Visser M, et al. Nutrition in the age-related disablement process. J Nutr Health Aging. 2011;15(8):599–604.PubMedCrossRefGoogle Scholar
  11. 11.
    Donini LM, De Felice MR, Savina C, Coletti C, Paolini M, Laviano A, et al. Predicting the outcome of long-term care by clinical and functional indices: the role of nutritional status. J Nutr Health Aging. 2011;15(7):586–92.PubMedCrossRefGoogle Scholar
  12. 12.
    Nieuwenhuizen WF, Weenen H, Rigby P, Hetherington MM. Older adults and patients in need of nutritional support: review of current treatment options and factors influencing nutritional intake. Clin Nutr. 2010;29(2):160–9.PubMedCrossRefGoogle Scholar
  13. 13.
    Gaillard C, Alix E, Sallé A, Berrut G, Ritz P. Energy requirements in frail elderly people: a review of the literature. Clin Nutr. 2007;26(1):16–24.PubMedCrossRefGoogle Scholar
  14. 14.
    Vellas BJ, Hunt WC, Romero LJ, Koehler KM, Baumgartner RN, Garry PJ. Changes in nutritional status and patterns of morbidity among free-living elderly persons: a 10-year longitudinal study. Nutrition. 1997;13(6):515–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Kim C-O, Lee K-R. Preventive effect of protein-energy supplementation on the functional decline of frail older adults with low socioeconomic status: a community-based randomized controlled study. J Gerontol A Biol Sci Med Sci. 2013;68(3):309–16.PubMedCrossRefGoogle Scholar
  16. 16.
    Rolland Y, Czerwinski S, Abellan Van Kan G, Morley JE, Cesari M, Onder G, et al. Sarcopenia: its assessment, etiology, pathogenesis, consequences and future perspectives. J Nutr Health Aging. 2008;12(7):433–50.PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Houston DK, Nicklas BJ, Ding J, Harris TB, Tylavsky FA, Newman AB, et al. Dietary protein intake is associated with lean mass change in older, community-dwelling adults: the Health, Aging, and Body Composition (Health ABC) Study. Am J Clin Nutr. 2008;87(1):150–5.PubMedGoogle Scholar
  18. 18.
    Volpi E, Kobayashi H, Sheffield-Moore M, Mittendorfer B, Wolfe RR. Essential amino acids are primarily responsible for the amino acid stimulation of muscle protein anabolism in healthy elderly adults. Am J Clin Nutr. 2003;78(2):250–8.PubMedCentralPubMedGoogle Scholar
  19. 19.
    Paddon-Jones D, Sheffield-Moore M, Zhang X-J, Volpi E, Wolf SE, Aarsland A, et al. Amino acid ingestion improves muscle protein synthesis in the young and elderly. Am J Physiol Endocrinol Metab. 2004;286(3):E321–328.CrossRefGoogle Scholar
  20. 20.
    Katsanos CS, Kobayashi H, Sheffield-Moore M, Aarsland A, Wolfe RR. A high proportion of leucine is required for optimal stimulation of the rate of muscle protein synthesis by essential amino acids in the elderly. Am J Physiol Endocrinol Metab. 2006;291(2):E381–387.CrossRefGoogle Scholar
  21. 21.
    Brodsky IG, Suzara D, Hornberger TA, Goldspink P, Yarasheski KE, Smith S, et al. Isoenergetic dietary protein restriction decreases myosin heavy chain IIx fraction and myosin heavy chain production in humans. J Nutr. 2004;134(2):328–34.PubMedGoogle Scholar
  22. 22.
    Walrand S, Short KR, Bigelow ML, Sweatt AJ, Hutson SM, Nair KS. Functional impact of high protein intake on healthy elderly people. Am J Physiol Endocrinol Metab. 2008;295(4):E921–928.CrossRefGoogle Scholar
  23. 23.
    Dideriksen K, Reitelseder S, Holm L. Influence of amino acids, dietary protein, and physical activity on muscle mass development in humans. Nutrients. 2013;5(3):852–76.PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Gweon H-S, Sung H-J, Lee D-H. Short-term protein intake increases fractional synthesis rate of muscle protein in the elderly: meta-analysis. Nutr Res Pract. 2010;4(5):375–82.PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Schutz Y. Protein turnover, ureagenesis and gluconeogenesis. Int J Vitam Nutr Res. 2011;81(2–3):101–7.PubMedCrossRefGoogle Scholar
  26. 26.
    Dardevet D, Sornet C, Balage M, Grizard J. Stimulation of in vitro rat muscle protein synthesis by leucine decreases with age. J Nutr. 2000;130(11):2630–5.PubMedGoogle Scholar
  27. 27.
    Welch AA. Nutritional influences on age-related skeletal muscle loss. Proc Nutr Soc. 2014;73(1):16–33.PubMedCrossRefGoogle Scholar
  28. 28.
    Cuthbertson D, Smith K, Babraj J, Leese G, Waddell T, Atherton P, et al. Anabolic signaling deficits underlie amino acid resistance of wasting, aging muscle. FASEB J. 2005;19(3):422–4.PubMedGoogle Scholar
  29. 29.
    Rand WM, Pellett PL, Young VR. Meta-analysis of nitrogen balance studies for estimating protein requirements in healthy adults. Am J Clin Nutr. 2003;77(1):109–27.PubMedGoogle Scholar
  30. 30.
    Joint WHO/FAO/UNU Expert Consultation. Protein and amino acid requirements in human nutrition. World Health Organ Tech Rep Ser. 2007;(935):1–265, back cover.Google Scholar
  31. 31.
    Gaffney-Stomberg E, Insogna KL, Rodriguez NR, Kerstetter JE. Increasing dietary protein requirements in elderly people for optimal muscle and bone health. J Am Geriatr Soc. 2009;57(6):1073–9.PubMedCrossRefGoogle Scholar
  32. 32.
    Volpi E, Campbell WW, Dwyer JT, Johnson MA, Jensen GL, Morley JE, et al. Is the optimal level of protein intake for older adults greater than the recommended dietary allowance? J Gerontol A Biol Sci Med Sci. 2013;68(6):677–81.PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Roubenoff R. Sarcopenia: a major modifiable cause of frailty in the elderly. J Nutr Health Aging. 2000;4(3):140–2.PubMedGoogle Scholar
  34. 34.
    Campbell WW, Johnson CA, McCabe GP, Carnell NS. Dietary protein requirements of younger and older adults. Am J Clin Nutr. 2008;88(5):1322–9.PubMedGoogle Scholar
  35. 35.
    Campbell WW, Crim MC, Dallal GE, Young VR, Evans WJ. Increased protein requirements in elderly people: new data and retrospective reassessments. Am J Clin Nutr. 1994;60(4):501–9.PubMedGoogle Scholar
  36. 36.
    Morse MH, Haub MD, Evans WJ, Campbell WW. Protein requirement of elderly women: nitrogen balance responses to three levels of protein intake. J Gerontol A Biol Sci Med Sci. 2001;56(11):M724–730.CrossRefGoogle Scholar
  37. 37.
    Campbell WW, Trappe TA, Wolfe RR, Evans WJ. The recommended dietary allowance for protein may not be adequate for older people to maintain skeletal muscle. J Gerontol A Biol Sci Med Sci. 2001;56(6):M373–380.CrossRefGoogle Scholar
  38. 38.
    Thalacker-Mercer AE, Fleet JC, Craig BA, Carnell NS, Campbell WW. Inadequate protein intake affects skeletal muscle transcript profiles in older humans. Am J Clin Nutr. 2007;85(5):1344–52.PubMedCentralPubMedGoogle Scholar
  39. 39.
    Beasley JM, LaCroix AZ, Neuhouser ML, Huang Y, Tinker L, Woods N, et al. Protein intake and incident frailty in the Women’s Health Initiative observational study. J Am Geriatr Soc. 2010;58(6):1063–71.PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Cermak NM, Res PT, de Groot LCPGM, Saris WHM, van Loon LJC. Protein supplementation augments the adaptive response of skeletal muscle to resistance-type exercise training: a meta-analysis. Am J Clin Nutr. 2012;96(6):1454–64.PubMedCrossRefGoogle Scholar
  41. 41.
    Paddon-Jones D, Rasmussen BB. Dietary protein recommendations and the prevention of sarcopenia. Curr Opin Clin Nutr Metab Care. 2009;12(1):86–90.PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Bauer J, Biolo G, Cederholm T, Cesari M, Cruz-Jentoft AJ, Morley JE, et al. Evidence-based recommendations for optimal dietary protein intake in older people: a position paper from the PROT-AGE Study Group. J Am Med Dir Assoc. 2013;14(8):542–59.PubMedCrossRefGoogle Scholar
  43. 43.
    Tieland M, Borgonjen-Van den Berg KJ, van Loon LJC, de Groot LCPGM. Dietary protein intake in community-dwelling, frail, and institutionalized elderly people: scope for improvement. Eur J Nutr. 2012;51(2):173–9.PubMedCrossRefGoogle Scholar
  44. 44.
    Fiatarone MA, O’Neill EF, Ryan ND, Clements KM, Solares GR, Nelson ME, et al. Exercise training and nutritional supplementation for physical frailty in very elderly people. N Engl J Med. 1994;23;330(25):1769–75.CrossRefGoogle Scholar
  45. 45.
    Bonnefoy M, Cornu C, Normand S, Boutitie F, Bugnard F, Rahmani A, et al. The effects of exercise and protein-energy supplements on body composition and muscle function in frail elderly individuals: a long-term controlled randomised study. Br J Nutr. 2003;89(5):731–9.PubMedCrossRefGoogle Scholar
  46. 46.
    Glover EI, Oates BR, Tang JE, Moore DR, Tarnopolsky MA, Phillips SM. Resistance exercise decreases eIF2Bepsilon phosphorylation and potentiates the feeding-induced stimulation of p70S6K1 and rpS6 in young men. Am J Physiol Regul Integr Comp Physiol. 2008;295(2):R604–610.CrossRefGoogle Scholar
  47. 47.
    Biolo G, Ciocchi B, Lebenstedt M, Barazzoni R, Zanetti M, Platen P, et al. Short-term bed rest impairs amino acid-induced protein anabolism in humans. J Physiol (Lond). 2004;15;558(Pt 2):381–8.CrossRefGoogle Scholar
  48. 48.
    Meng S-J, Yu L-J. Oxidative stress, molecular inflammation and sarcopenia. Int J Mol Sci. 2010;11(4):1509–26.PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Semba RD, Ferrucci L, Sun K, Walston J, Varadhan R, Guralnik JM, et al. Oxidative stress and severe walking disability among older women. Am J Med. 2007;120(12):1084–9.PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Howard C, Ferrucci L, Sun K, Fried LP, Walston J, Varadhan R, et al. Oxidative protein damage is associated with poor grip strength among older women living in the community. J Appl Physiol. 2007;103(1):17–20.PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Bartali B, Salvini S, Turrini A, Lauretani F, Russo CR, Corsi AM, et al. Age and disability affect dietary intake. J Nutr. 2003;133(9):2868–73.PubMedGoogle Scholar
  52. 52.
    Maras JE, Bermudez OI, Qiao N, Bakun PJ, Boody-Alter EL, Tucker KL. Intake of alpha-tocopherol is limited among US adults. J Am Diet Assoc. 2004;104(4):567–75.PubMedCrossRefGoogle Scholar
  53. 53.
    Manore MM, Vaughan LA, Carroll SS, Leklem JE. Plasma pyridoxal 5’-phosphate concentration and dietary vitamin B-6 intake in free-living, low-income elderly people. Am J Clin Nutr. 1989;50(2):339–45.PubMedGoogle Scholar
  54. 54.
    Wright JD, Bialostosky K, Gunter EW, Carroll MD, Najjar MF, Bowman BA, et al. Blood folate and vitamin B12: United States, 1988–94. Vital Health Stat 11. 1998;(243):1–78.PubMedGoogle Scholar
  55. 55.
    Prasad AS, Fitzgerald JT, Hess JW, Kaplan J, Pelen F, Dardenne M. Zinc deficiency in elderly patients. Nutrition. 1993;9(3):218–24.PubMedGoogle Scholar
  56. 56.
    Niskar AS, Paschal DC, Kieszak SM, Flegal KM, Bowman B, Gunter EW, et al. Serum selenium levels in the US population: Third National Health and Nutrition Examination Survey, 1988–1994. Biol Trace Elem Res. 2003;91(1):1–10.PubMedCrossRefGoogle Scholar
  57. 57.
    Michelon E, Blaum C, Semba RD, Xue Q-L, Ricks MO, Fried LP. Vitamin and carotenoid status in older women: associations with the frailty syndrome. J Gerontol A Biol Sci Med Sci. 2006;61(6):600–7.PubMedCrossRefGoogle Scholar
  58. 58.
    Mecocci P, Fanó G, Fulle S, MacGarvey U, Shinobu L, Polidori MC, et al. Age-dependent increases in oxidative damage to DNA, lipids, and proteins in human skeletal muscle. Free Radic Biol Med. 1999;26(3–4):303–8.PubMedCrossRefGoogle Scholar
  59. 59.
    Pansarasa O, Bertorelli L, Vecchiet J, Felzani G, Marzatico F. Age-dependent changes of antioxidant activities and markers of free radical damage in human skeletal muscle. Free Radic Biol Med. 1999;27(5–6):617–22.PubMedCrossRefGoogle Scholar
  60. 60.
    Cesari M, Pahor M, Bartali B, Cherubini A, Penninx BWJH, Williams GR, et al. Antioxidants and physical performance in elderly persons: the Invecchiare in Chianti (InCHIANTI) study. Am J Clin Nutr. 2004;79(2):289–94.PubMedGoogle Scholar
  61. 61.
    Lauretani F, Semba RD, Bandinelli S, Dayhoff-Brannigan M, Giacomini V, Corsi AM, et al. Low plasma carotenoids and skeletal muscle strength decline over 6 years. J Gerontol A Biol Sci Med Sci. 2008;63(4):376–83.PubMedCentralPubMedCrossRefGoogle Scholar
  62. 62.
    Alipanah N, Varadhan R, Sun K, Ferrucci L, Fried LP, Semba RD. Low serum carotenoids are associated with a decline in walking speed in older women. J Nutr Health Aging. 2009;13(3):170–5.PubMedCentralPubMedCrossRefGoogle Scholar
  63. 63.
    Semba RD, Lauretani F, Ferrucci L. Carotenoids as protection against sarcopenia in older adults. Arch Biochem Biophys. 2007 15;458(2):141–5.PubMedCentralPubMedCrossRefGoogle Scholar
  64. 64.
    Ryan MJ, Dudash HJ, Docherty M, Geronilla KB, Baker BA, Haff GG, et al. Vitamin E and C supplementation reduces oxidative stress, improves antioxidant enzymes and positive muscle work in chronically loaded muscles of aged rats. Exp Gerontol. 2010;45(11):882–95.PubMedCentralPubMedCrossRefGoogle Scholar
  65. 65.
    Ble A, Cherubini A, Volpato S, Bartali B, Walston JD, Windham BG, et al. Lower plasma vitamin E levels are associated with the frailty syndrome: the InCHIANTI study. J Gerontol A Biol Sci Med Sci. 2006;61(3):278–83.PubMedCrossRefGoogle Scholar
  66. 66.
    Bartali B, Semba RD, Frongillo EA, Varadhan R, Ricks MO, Blaum CS, et al. Low micronutrient levels as a predictor of incident disability in older women. Arch Intern Med. 2006 27;166(21):2335–40.PubMedCentralPubMedCrossRefGoogle Scholar
  67. 67.
    Saito K, Yokoyama T, Yoshida H, Kim H, Shimada H, Yoshida Y, et al. A significant relationship between plasma vitamin C concentration and physical performance among Japanese elderly women. J Gerontol A Biol Sci Med Sci. 2012;67(3):295–301.PubMedCrossRefGoogle Scholar
  68. 68.
    Semba RD, Bartali B, Zhou J, Blaum C, Ko C-W, Fried LP. Low serum micronutrient concentrations predict frailty among older women living in the community. J Gerontol A Biol Sci Med Sci. 2006;61(6):594–9.PubMedCrossRefGoogle Scholar
  69. 69.
    Rederstorff M, Krol A, Lescure A. Understanding the importance of selenium and selenoproteins in muscle function. Cell Mol Life Sci. 2006;63(1):52–9.PubMedCentralPubMedCrossRefGoogle Scholar
  70. 70.
    Fulle S, Protasi F, Di Tano G, Pietrangelo T, Beltramin A, Boncompagni S, et al. The contribution of reactive oxygen species to sarcopenia and muscle ageing. Exp Gerontol. 2004;39(1):17–24.PubMedCrossRefGoogle Scholar
  71. 71.
    Beck J, Ferrucci L, Sun K, Walston J, Fried LP, Varadhan R, et al. Low serum selenium concentrations are associated with poor grip strength among older women living in the community. Biofactors. 2007;29(1):37–44.PubMedCentralPubMedCrossRefGoogle Scholar
  72. 72.
    Lauretani F, Semba RD, Bandinelli S, Ray AL, Guralnik JM, Ferrucci L. Association of low plasma selenium concentrations with poor muscle strength in older community-dwelling adults: the InCHIANTI Study. Am J Clin Nutr. 2007;86(2):347–52.PubMedCentralPubMedGoogle Scholar
  73. 73.
    Scott D, Blizzard L, Fell J, Giles G, Jones G. Associations between dietary nutrient intake and muscle mass and strength in community-dwelling older adults: the Tasmanian Older Adult Cohort Study. J Am Geriatr Soc. 2010 Nov;58(11):2129–34.PubMedCrossRefGoogle Scholar
  74. 74.
    Trichopoulou A, Costacou T, Bamia C, Trichopoulos D. Adherence to a Mediterranean diet and survival in a Greek population. N Engl J Med. 2003;26;348(26):2599–608.PubMedCrossRefGoogle Scholar
  75. 75.
    Kiefte-de Jong JC, Mathers JC, Franco OH. Nutrition and healthy ageing: the key ingredients. Proc Nutr Soc. 2014;73(2):249–59.PubMedCrossRefGoogle Scholar
  76. 76.
    Mathers JC. Nutrition and ageing: knowledge, gaps and research priorities. Proc Nutr Soc. 2013 May;72(2):246–50.PubMedCrossRefGoogle Scholar
  77. 77.
    Milaneschi Y, Bandinelli S, Corsi AM, Lauretani F, Paolisso G, Dominguez LJ, et al. Mediterranean diet and mobility decline in older persons. Exp Gerontol. 2011;46(4):303–8.PubMedCentralPubMedCrossRefGoogle Scholar
  78. 78.
    Bollwein J, Diekmann R, Kaiser MJ, Bauer JM, Uter W, Sieber CC, et al. Dietary quality is related to frailty in community-dwelling older adults. J Gerontol A Biol Sci Med Sci. 2013;68(4):483–9.PubMedCrossRefGoogle Scholar
  79. 79.
    Houston DK, Neiberg RH, Tooze JA, Hausman DB, Johnson MA, Cauley JA, et al. Low 25-hydroxyvitamin D predicts the onset of mobility limitation and disability in community-dwelling older adults: the Health ABC Study. J Gerontol A Biol Sci Med Sci. 2013;68(2):181–7.PubMedCentralPubMedCrossRefGoogle Scholar
  80. 80.
    Wilhelm-Leen ER, Hall YN, Deboer IH, Chertow GM. Vitamin D deficiency and frailty in older Americans. J Intern Med. 2010;268(2):171–80.PubMedCentralPubMedCrossRefGoogle Scholar
  81. 81.
    Ensrud KE, Ewing SK, Fredman L, Hochberg MC, Cauley JA, Hillier TA, et al. Circulating 25-hydroxyvitamin D levels and frailty status in older women. J Clin Endocrinol Metab. 2010;95(12):5266–73.PubMedCentralPubMedCrossRefGoogle Scholar
  82. 82.
    Shardell M, D’Adamo C, Alley DE, Miller RR, Hicks GE, Milaneschi Y, et al. Serum 25-hydroxyvitamin D, transitions between frailty states, and mortality in older adults: the Invecchiare in Chianti Study. J Am Geriatr Soc. 2012;60(2):256–64.PubMedCentralPubMedCrossRefGoogle Scholar
  83. 83.
    Houston DK, Tooze JA, Davis CC, Chaves PHM, Hirsch CH, Robbins JA, et al. Serum 25-hydroxyvitamin D and physical function in older adults: the Cardiovascular Health Study All Stars. J Am Geriatr Soc. 2011;59(10):1793–801.PubMedCentralPubMedCrossRefGoogle Scholar
  84. 84.
    Chan R, Chan D, Woo J, Ohlsson C, Mellström D, Kwok T, et al. Not all elderly people benefit from vitamin D supplementation with respect to physical function: results from the Osteoporotic Fractures in Men Study, Hong Kong. J Am Geriatr Soc. 2012;60(2):290–5.PubMedCrossRefGoogle Scholar
  85. 85.
    Ensrud KE, Blackwell TL, Cauley JA, Cummings SR, Barrett-Connor E, Dam T-TL, et al. Circulating 25-hydroxyvitamin D levels and frailty in older men: the osteoporotic fractures in men study. J Am Geriatr Soc. 2011;59(1):101–6.PubMedCentralPubMedCrossRefGoogle Scholar
  86. 86.
    Sanders KM, Stuart AL, Williamson EJ, Simpson JA, Kotowicz MA, Young D, et al. Annual high-dose oral vitamin D and falls and fractures in older women: a randomized controlled trial. JAMA. 2010;12;303(18):1815–22.CrossRefGoogle Scholar
  87. 87.
    Stockton KA, Mengersen K, Paratz JD, Kandiah D, Bennell KL. Effect of vitamin D supplementation on muscle strength: a systematic review and meta-analysis. Osteoporos Int. 2011;22(3):859–71.PubMedGoogle Scholar
  88. 88.
    Bischoff-Ferrari HA, Dawson-Hughes B, Stöcklin E, Sidelnikov E, Willett WC, Edel JO, et al. Oral supplementation with 25(OH)D3 versus vitamin D3: effects on 25(OH)D levels, lower extremity function, blood pressure, and markers of innate immunity. J Bone Miner Res. 2012;27(1):160–9.PubMedCrossRefGoogle Scholar
  89. 89.
    Prietl B, Treiber G, Pieber TR, Amrein K. Vitamin D and immune function. Nutrients. 2013;5(7):2502–21.PubMedCentralPubMedCrossRefGoogle Scholar
  90. 90.
    Rodacki CLN, Rodacki ALF, Pereira G, Naliwaiko K, Coelho I, Pequito D, et al. Fish-oil supplementation enhances the effects of strength training in elderly women. Am J Clin Nutr. 2012;95(2):428–36.PubMedCrossRefGoogle Scholar
  91. 91.
    Takayama M, Arai Y, Sasaki S, Hashimoto M, Shimizu K, Abe Y, et al. Association of marine-origin n-3 polyunsaturated fatty acids consumption and functional mobility in the community-dwelling oldest old. J Nutr Health Aging. 2013;17(1):82–9.PubMedCrossRefGoogle Scholar
  92. 92.
    Hutchins-Wiese HL, Kleppinger A, Annis K, Liva E, Lammi-Keefe CJ, Durham HA, et al. The impact of supplemental n-3 long chain polyunsaturated fatty acids and dietary antioxidants on physical performance in postmenopausal women. J Nutr Health Aging. 2013;17(1):76–80.PubMedCrossRefGoogle Scholar
  93. 93.
    Volpi E, Mittendorfer B, Rasmussen BB, Wolfe RR. The response of muscle protein anabolism to combined hyperaminoacidemia and glucose-induced hyperinsulinemia is impaired in the elderly. J Clin Endocrinol Metab. 2000;85(12):4481–90.PubMedCentralPubMedGoogle Scholar
  94. 94.
    Magne H, Savary-Auzeloux I, Rémond D, Dardevet D. Nutritional strategies to counteract muscle atrophy caused by disuse and to improve recovery. Nutr Res Rev. 2013;26(2):149–65.PubMedCrossRefGoogle Scholar
  95. 95.
    West DWD, Burd NA, Coffey VG, Baker SK, Burke LM, Hawley JA, et al. Rapid aminoacidemia enhances myofibrillar protein synthesis and anabolic intramuscular signaling responses after resistance exercise. Am J Clin Nutr. 2011;94(3):795–803.PubMedCrossRefGoogle Scholar
  96. 96.
    Pennings B, Boirie Y, Senden JMG, Gijsen AP, Kuipers H, van Loon LJC. Whey protein stimulates postprandial muscle protein accretion more effectively than do casein and casein hydrolysate in older men. Am J Clin Nutr. 2011;93(5):997–1005.PubMedCrossRefGoogle Scholar
  97. 97.
    Kim J-S, Wilson JM, Lee S-R. Dietary implications on mechanisms of sarcopenia: roles of protein, amino acids and antioxidants. J Nutr Biochem. 2010;21(1):1–13.PubMedCrossRefGoogle Scholar
  98. 98.
    Pennings B, Groen B, de Lange A, Gijsen AP, Zorenc AH, Senden JMG, et al. Amino acid absorption and subsequent muscle protein accretion following graded intakes of whey protein in elderly men. Am J Physiol Endocrinol Metab. 2012 15;302(8):E992–999.CrossRefGoogle Scholar
  99. 99.
    Verhoeven S, Vanschoonbeek K, Verdijk LB, Koopman R, Wodzig WKWH, Dendale P, et al. Long-term leucine supplementation does not increase muscle mass or strength in healthy elderly men. Am J Clin Nutr. 2009;89(5):1468–75.PubMedCrossRefGoogle Scholar
  100. 100.
    Fitschen PJ, Wilson GJ, Wilson JM, Wilund KR. Efficacy of ß-hydroxy-ß-methylbutyrate supplementation in elderly and clinical populations. Nutrition. 2013;29(1):29–36.PubMedCrossRefGoogle Scholar
  101. 101.
    Bahri S, Zerrouk N, Aussel C, Moinard C, Crenn P, Curis E, et al. Citrulline: from metabolism to therapeutic use. Nutrition. 2013;29(3):479–84.PubMedCrossRefGoogle Scholar
  102. 102.
    Osowska S, Duchemann T, Walrand S, Paillard A, Boirie Y, Cynober L, et al. Citrulline modulates muscle protein metabolism in old malnourished rats. Am J Physiol Endocrinol Metab. 2006;291(3):E582–586.CrossRefGoogle Scholar
  103. 103.
    Faure C, Raynaud-Simon A, Ferry A, Daugé V, Cynober L, Aussel C, et al. Leucine and citrulline modulate muscle function in malnourished aged rats. Amino Acids. 2012;42(4):1425–33.PubMedCrossRefGoogle Scholar
  104. 104.
    Bouillanne O, Curis E, Hamon-Vilcot B, Nicolis I, Chrétien P, Schauer N, et al. Impact of protein pulse feeding on lean mass in malnourished and at-risk hospitalized elderly patients: a randomized controlled trial. Clin Nutr. 2013;32(2):186–92.PubMedCrossRefGoogle Scholar
  105. 105.
    Groen BBL, Res PT, Pennings B, Hertle E, Senden JMG, Saris WHM, et al. Intragastric protein administration stimulates overnight muscle protein synthesis in elderly men. Am J Physiol Endocrinol Metab. 2012 1;302(1):E52–60.CrossRefGoogle Scholar
  106. 106.
    Res PT, Groen B, Pennings B, Beelen M, Wallis GA, Gijsen AP, et al. Protein ingestion before sleep improves postexercise overnight recovery. Med Sci Sports Exerc. 2012;44(8):1560–9.PubMedCrossRefGoogle Scholar
  107. 107.
    Alamdari N, O’Neal P, Hasselgren P-O. Curcumin and muscle wasting: a new role for an old drug? Nutrition. 2009;25(2):125–9.PubMedCentralPubMedCrossRefGoogle Scholar
  108. 108.
    Brose A, Parise G, Tarnopolsky MA. Creatine supplementation enhances isometric strength and body composition improvements following strength exercise training in older adults. J Gerontol A Biol Sci Med Sci. 2003;58(1):11–9.PubMedCrossRefGoogle Scholar
  109. 109.
    Candow DG, Little JP, Chilibeck PD, Abeysekara S, Zello GA, Kazachkov M, et al. Low-dose creatine combined with protein during resistance training in older men. Med Sci Sports Exerc. 2008;40(9):1645–52.PubMedCrossRefGoogle Scholar
  110. 110.
    Aguiar AF, Januário RSB, Junior RP, Gerage AM, Pina FLC, do Nascimento MA, et al. Long-term creatine supplementation improves muscular performance during resistance training in older women. Eur J Appl Physiol. 2013;113(4):987–96.PubMedCrossRefGoogle Scholar
  111. 111.
    Biolo G, Maggi SP, Williams BD, Tipton KD, Wolfe RR. Increased rates of muscle protein turnover and amino acid transport after resistance exercise in humans. Am J Physiol. 1995;268(3 Pt 1):E514–520.Google Scholar
  112. 112.
    Tieland M, van de Rest O, Dirks ML, van der Zwaluw N, Mensink M, van Loon LJC, et al. Protein supplementation improves physical performance in frail elderly people: a randomized, double-blind, placebo-controlled trial. J Am Med Dir Assoc. 2012;13(8):720–6.PubMedCrossRefGoogle Scholar

Copyright information

© Serdi and Springer-Verlag France 2014

Authors and Affiliations

  • Marc Bonnefoy
    • 1
    • 2
    • 3
    • 14
  • G. Berrut
    • 4
    • 14
  • B. Lesourd
    • 9
    • 14
  • M. Ferry
    • 5
    • 14
  • T. Gilbert
    • 1
  • O. Guerin
    • 6
    • 14
  • O. Hanon
    • 7
  • C. Jeandel
    • 8
    • 14
  • E. Paillaud
    • 10
    • 14
  • A. Raynaud-Simon
    • 11
    • 14
  • G. Ruault
    • 14
  • Y. Rolland
    • 12
    • 13
    • 14
  1. 1.Department of Geriatric MedicineCHU Lyon Groupement Hospitalier SudPierre-Bénite CedexFrance
  2. 2.INSERM U1060Oullins CedexFrance
  3. 3.Faculté de Médecine Lyon SudUniversity Claude-Bernard Lyon 1Oullins CedexFrance
  4. 4.Department of Geriatric MedicineCHU — Hospital BellierNantesFrance
  5. 5.INSERM U1125 — INRA / CNAMUMR U557Paris 13France
  6. 6.Department of Geriatric MedicineCHU Nice — University Nice Sophia AntipolisNiceFrance
  7. 7.EA 4468 INSERM — Department of Geriatric MedicineUniversity Paris DescartesParisFrance
  8. 8.Centre de Gérontologie Clinique Antonin Balmes CHU de MontpellierUniversity I MontpellierMontpellierFrance
  9. 9.Department of Geriatrics — CHU Clermont-Ferrand: UPRES AME 2PUniversity of Clermont-FerrandClermont-FerrandFrance
  10. 10.APHP — Groupe Hospitalier Albert Chenevier-Henri MondorUnité de Médecine Gériatrique — Créteil — FranceCréteilFrance
  11. 11.Department of GeriatricsHôpital BichatParisFrance
  12. 12.GerontopôleToulouse University HospitalToulouseFrance
  13. 13.INSERM UMR 1027University of Toulouse IIIToulouseFrance
  14. 14.French expert group Nutrition and Geriatrics (GEGN) from French geriatric society SFGGParisFrance

Personalised recommendations