Skip to main content

A review of the effects of dietary silicon intake on bone homeostasis and regeneration

Abstract

Objective

Increasing evidences suggest that dietary Silicon (Si) intake, is positively correlated with bone homeostasis and regeneration, representing a potential and valid support for the prevention and improvement of bone diseases, like osteoporosis. This review, aims to provide the state of art of the studies performed until today, in order to investigate and clarify the beneficial properties and effects of silicates, on bone metabolism.

Methods

We conducted a systematic literature search up to March 2013, using two medical databases (Pubmed and the Cochrane Library), to review the studies about Si consumption and bone metabolism.

Results

We found 45 articles, but 38 were specifically focused on Si studies.

Conclusion

Results showed a positive relationship between dietary Si intake and bone regeneration.

This is a preview of subscription content, access via your institution.

References

  1. Jugdaohsingh R. Silicon and bone health. J Nutr Health Aging 2007;11:99–110

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Casey TR, Bamforth CW. Silicon in beer and brewing. J Sci Food Agric 2010;90:784–788

    CAS  PubMed  Google Scholar 

  3. Jugdaohsingh R, Anderson SH, Tucker KL, Elliott H, Kiel DP, Thompson RP, Powell JJ. Dietary silicon intake and absorption. Am J Clin Nutr 2002;75:887–893

    CAS  PubMed  Google Scholar 

  4. Reffitt DM, Ogston N, Jugdaohsingh R, Cheung HF, Evans BA, Thompson RP, Powell JJ, Hampson GN. Orthosilicic acid stimulates collagen type 1 synthesis and osteoblastic differentiation in human osteoblast-like cells in vitro. Bone 2003;32:127–135

    Article  CAS  PubMed  Google Scholar 

  5. Robberecht H, Van Cauwenbergh R, Van Vlaslaer V, Hermans N. Dietary silicon intake in Belgium: Sources, availability from foods, and human serum levels. Sci Total Environ 2009;407:4777–4782

    Article  CAS  PubMed  Google Scholar 

  6. Jugdaohsingh R, Tucker KL, Qiao N, Cupples LA, Kiel DP, Powell JJ. Dietary silicon intake is positively associated with bone mineral density in men and premenopausal women of the Framingham Offspring cohort. J Bone Miner Res 2004;19:297–307

    Article  CAS  PubMed  Google Scholar 

  7. Bae YJ, Kim JY, Choi MK, Chung YS, Kim MH. Short-term administration of water-soluble silicon improves mineral density of the femur and tibia in ovariectomized rats. Biol Trace Elem Res 2008;124:157–163

    Article  CAS  PubMed  Google Scholar 

  8. Li Z, Karp H, Zerlin A, Lee TY, Carpenter C, Heber D. Absorption of Silicon from artesian aquifer water and its impact on bone health in postmenopausal women: a 12 week pilot study. Nutr J 2010;9:44

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Woo DG, Lee BY, Lim D, Kim HS. Relationship between nutrition factors and osteopenia: Effects of experimental diets on immature bone quality. J Biomech 2009. 42:1102–1107.

    Article  CAS  PubMed  Google Scholar 

  10. Aaseth J, Boivin G, Andersen. Osteoporosis and trace elements: an overview. J Trace Elem Med Biol 2012;26:149–152.

    Article  CAS  PubMed  Google Scholar 

  11. Carlisle EM. Silicon: a possible factor in bone calcification. Science 1970;167:279–328

    Article  CAS  PubMed  Google Scholar 

  12. Carlisle EM. Silicon: an essential element for the chick. Science 1972;178:619–621

    Article  CAS  PubMed  Google Scholar 

  13. Carlisle EM. In vivo requirement for Silicon in articular cartilage and connective tissue formation in the chick. J Nutr 1976;106:478–484

    CAS  PubMed  Google Scholar 

  14. Carlisle EM. A Silicon requirement for normal skull formation in chicks. J Nutr 1980;110:352–359.

    CAS  PubMed  Google Scholar 

  15. Carlisle EM. The nutritional essentiality of Silicon. Nutr Rev 1982;40:193–198

    Article  CAS  PubMed  Google Scholar 

  16. Hott M, de Pollak C, Modrowski D, Marie PJ. Short-term effects of organic Silicon on trabecular bone in mature ovariectomized rats. Calcif Tissue Int 1993;53:174–179

    Article  CAS  PubMed  Google Scholar 

  17. Seaborn CD, Nielsen FH. Effects of germanium and Silicon on bone mineralization. Biol Trace Elem Res 1994;42:151–164

    Article  CAS  PubMed  Google Scholar 

  18. Seaborn CD, Nielsen FH. Dietary Silicon and arginine affect mineral element composition of rat femur and vertebra. Biol Trace Elem Res 2002;89:239–250

    Article  CAS  PubMed  Google Scholar 

  19. Rico H, Gallego-Lago JL, Hernández ER, Villa LF, Sanchez-Atrio A, Seco C. Gérvas JJ. Effect of Silicon supplement on osteopenia induced by ovariectomy in rats. Calcif Tissue Int 2000;66:53–55

    Article  CAS  PubMed  Google Scholar 

  20. Calomme M, Geusens P, Demeester N, Behets GJ, D’Haese P, Sindambiwe JB, Van Hoof V, Vanden Berghe D. Partial prevention of long-term femoral bone loss in aged ovariectomized rats supplemented with choline-stabilized Orthosilicic acid. Calcif Tissue Int 2006;78:227–232.

    Article  CAS  PubMed  Google Scholar 

  21. Kim MH, Bae YJ, Choi MK, Chung YS. Silicon supplementation improves the bone mineral density of calcium-deficient ovariectomized rats by reducing bone resorption. Biol Trace Elem Res 2009;128:239–247

    Article  CAS  PubMed  Google Scholar 

  22. Kayongo-Male H, Julson JL. Effects of high levels of dietary Silicon on bone development of growing rats and turkeys fed semi-purified diets. Biol Trace Elem Res 2008;123:191–201

    Article  CAS  PubMed  Google Scholar 

  23. McNaughton SA, Bolton-Smith C, Mishra GD, Jugdaohsingh R, Powell JJ. Dietary Silicon intake in post-menopausal women. Br J Nutr 2005;94:813–817

    Article  CAS  PubMed  Google Scholar 

  24. Spector TD, Calomme MR, Anderson SH, Clement G, Bevan L, Demeester N, Swaminathan R, Jugdaohsingh R, Berghe DA, Powell JJ. Choline-stabilized Orthosilicic acid supplementation as an adjunct to calcium/vitamin D3 stimulates markers of bone formation in osteopenic females: a randomized, placebo-controlled trial. BMC Musculoskelet Disord 2008;9:85.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Macdonald HM, Hardcastle AC, Jugdaohsingh R, Fraser WD, Reid DM, Powell JJ. Dietary Silicon interacts with oestrogen to influence bone health: evidence from the Aberdeen Prospective Osteoporosis Screening Study. Bone 2012;50:681–687.

    Article  CAS  PubMed  Google Scholar 

  26. Shie MY, Ding SJ, Chang HC. The role of Silicon in osteoblast-like cell proliferation and apoptosis. Acta Biomater 2011;7:2604–2614.

    Article  CAS  PubMed  Google Scholar 

  27. Kim EJ, Bu SY, Sung MK, Choi MK. Effects of Silicon on Osteoblast Activity and Bone Mineralization of MC3T3-E1 Cells. Biol Trace Elem Res 2013;152:105–112.

    Article  CAS  PubMed  Google Scholar 

  28. Zou S, Ireland D, Brooks RA, Rushton N, Best S. The effects of silicate ions on human osteoblast adhesion, proliferation, and differentiation. J Biomed Mater Res B Appl Biomater 2009;90:123–130

    CAS  PubMed  Google Scholar 

  29. Anderson SI, Downes S, Perry CC, Caballero AM. Evaluation of the osteoblast response to a silica gel in vitro. J Mater Sci Mater Med 1998;9:731–735

    Article  CAS  PubMed  Google Scholar 

  30. Wiens M, Wang X, Schlossmacher U, Lieberwirth I, Glasser G, Ushijima H. Schröder HC, Müller WE. Osteogenic potential of biosilica on human osteoblast-like (SaOS-2) cells. Calcif. Tissue Int 2010;87:513–524

    Article  CAS  Google Scholar 

  31. Mieszawska AJ, Fourligas N, Georgakoudi I, Ouhib NM, Belton DJ, Perry CC, Kaplan DL. Osteoinductive silk-silica composite biomaterials for bone regeneration. Biomaterials 2010;31:8902–8910

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Ganesh N, Jayakumar R, Koyakutty M, Mony U, Nair SV. Embedded silica nanoparticles in poly(caprolactone) nanofibrous scaffolds enhanced osteogenic potential for bone tissue engineering. Tissue Eng Part A 2012;18:1867–1881

    Article  CAS  PubMed  Google Scholar 

  33. Pelaez-Vargas A, Gallego-Perez D, Magallanes-Perdomo M, Fernandes MH, Hansford DJ, De Aza AH, Pena P, Monteiro FJ. Isotropic micropatterned silica coatings on zirconia induce guided cell growth for dental implants. Dent Mater 2011;27:581–589

    Article  CAS  PubMed  Google Scholar 

  34. Huang Z, Daniels RH, Enzerink RJ, Hardev V, Sahi V, Goodman SB. Effect of nanofiber-coated surfaces on the proliferation and differentiation of osteoprogenitors in vitro. Tissue Eng Part A 2008;14:1853–1859

    Article  CAS  PubMed  Google Scholar 

  35. Midha S, van den Bergh W, Kim TB, Lee PD, Jones JR, Mitchell CA. Bioactive Glass Foam Scaffolds are Remodelled by Osteoclasts and Support the Formation of Mineralized Matrix and Vascular Networks In Vitro. Adv Health Mater 2013;2:490–499

    Article  CAS  Google Scholar 

  36. Duan W, Ning C, Tang T. Cytocompatibility and osteogenic activity of a novel calcium phosphate silicate bioceramic: Silicocarnotite. J Biomed Mater Res A 2012

    Google Scholar 

  37. Toskas G, Cherif C, Hund RD, Laourine E, Mahltig B, Fahmi A, Heinemann C, Hanke T. Chitosan(PEO)/silica hybrid nanofibers as a potential biomaterial for bone regeneration. Carbohydr Polym 2013;94:713–722

    Article  CAS  PubMed  Google Scholar 

  38. Lehmann G, Cacciotti I, Palmero P, Montanaro L, Bianco A, Campagnolo L, Camaioni A. Differentiation of osteoblast and osteoclast precursors on pure and Silicon-substituted synthesized hydroxyapatites. Biomed Mater 2012;7:055001

    Article  PubMed  Google Scholar 

  39. Chaudhari A, Braem A, Vleugels J, Martens JA, Naert I, Cardoso MV, Duyck J. Bone tissue response to porous and functionalized titanium and silica based coatings. PLoS One 2011;6: e24186

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Coathup MJ, Samizadeh S, Fang YS, Buckland T, Hing KA, Blunn GW. The osteoinductivity of silicate-substituted calcium phosphate. J Bone Joint Surg Am 2011;93:2219–2226

    Article  PubMed  Google Scholar 

  41. Coathup MJ, Cai Q, Campion C, Buckland T, Blunn GW. The effect of particle size on the osteointegration of injectable silicate-substituted calcium phosphate bone substitute materials. J Biomed Mater Res B Appl Biomater, 2013

    Google Scholar 

  42. Beck GR Jr, Ha SW, Camalier CE, Yamaguchi M, Li Y, Lee JK, Weitzmann MN. Bioactive silica-based nanoparticles stimulate bone-forming osteoblasts, suppress bone-res orbing osteoclasts, and enhance bone mineral density in vivo. Nanomedicine 2012;8:793–803

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. El-Gendy R, Yang XB, Newby PJ, Boccaccini AR, Kirkham J. Osteogenic differentiation of human dental pulp stromal cells on 45S5 Bioglass? based scaffolds in vitro and in vivo. Tissue Eng Part A 2013;19:707–715

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Jun SH, Lee EJ, Jang TS, Kim HE, Jang JH, Koh YH. Bone morphogenic protein-2 (BMP-2) loaded hybrid coating on porous hydroxyapatite scaffolds for bone tissue engineering. J Mater Sci Mater Med 2013;24:773–782

    Article  CAS  PubMed  Google Scholar 

  45. Lee C, Cheong M, Hsiao W, Liu H, Tsai C, Wang M, Wu C, Chang K, Lam G, Deng W. Use of iQPR-H2O for bone regeneration and its potential in the improvement of osteoporosis. BMC Musculoskelet Disord 2011;12:227

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luigi Fabrizio Rodella.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rodella, L.F., Bonazza, V., Labanca, M. et al. A review of the effects of dietary silicon intake on bone homeostasis and regeneration. J Nutr Health Aging 18, 820–826 (2014). https://doi.org/10.1007/s12603-014-0555-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12603-014-0555-8

Key words

  • Dietary silicon intake
  • ortho-silicic acid
  • bone regeneration
  • osteoporosis
  • silica scaffolds